调参贝叶斯优化(BayesianOptimization)
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.svm import SVC
from bayes_opt import BayesianOptimization
from bayes_opt.util import Colours
def get_data():
"""Synthetic binary classification dataset."""
data, targets = make_classification(
n_samples=1000,
n_features=45,
n_informative=12,
n_redundant=7,
random_state=134985745,
)
return data, targets
def svc_cv(C, gamma, data, targets):
"""SVC cross validation.
This function will instantiate a SVC classifier with parameters C and
gamma. Combined with data and targets this will in turn be used to perform
cross validation. The result of cross validation is returned.
Our goal is to find combinations of C and gamma that maximizes the roc_auc
metric.
"""
estimator = SVC(C=C, gamma=gamma, random_state=2)
cval = cross_val_score(estimator, data, targets, scoring='roc_auc', cv=4)
return cval.mean()
def rfc_cv(n_estimators, min_samples_split, max_features, data, targets):
"""Random Forest cross validation.
This function will instantiate a random forest classifier with parameters
n_estimators, min_samples_split, and max_features. Combined with data and
targets this will in turn be used to perform cross validation. The result
of cross validation is returned.
Our goal is to find combinations of n_estimators, min_samples_split, and
max_features that minimzes the log loss.
"""
estimator = RFC(
n_estimators=n_estimators,
min_samples_split=min_samples_split,
max_features=max_features,
random_state=2
)
cval = cross_val_score(estimator, data, targets, scoring='neg_log_loss', cv=4)
return cval.mean()
def optimize_svc(data, targets):
"""Apply Bayesian Optimization to SVC parameters."""
def svc_crossval(expC, expGamma):
"""Wrapper of SVC cross validation.
Notice how we transform between regular and log scale. While this
is not technically necessary, it greatly improves the performance
of the optimizer.
"""
C = 10 ** expC
gamma = 10 ** expGamma
return svc_cv(C=C, gamma=gamma, data=data, targets=targets)
optimizer = BayesianOptimization(
f=svc_crossval,
pbounds={"expC": (-3, 2), "expGamma": (-4, -1)},
random_state=1234,
verbose=2
)
optimizer.maximize(n_iter=10)
print("Final result:", optimizer.max)
def optimize_rfc(data, targets):
"""Apply Bayesian Optimization to Random Forest parameters."""
def rfc_crossval(n_estimators, min_samples_split, max_features):
"""Wrapper of RandomForest cross validation.
Notice how we ensure n_estimators and min_samples_split are casted
to integer before we pass them along. Moreover, to avoid max_features
taking values outside the (0, 1) range, we also ensure it is capped
accordingly.
"""
return rfc_cv(
n_estimators=int(n_estimators),
min_samples_split=int(min_samples_split),
max_features=max(min(max_features, 0.999), 1e-3),
data=data,
targets=targets,
)
optimizer = BayesianOptimization(
f=rfc_crossval,
pbounds={
"n_estimators": (10, 250),
"min_samples_split": (2, 25),
"max_features": (0.1, 0.999),
},
random_state=1234,
verbose=2
)
optimizer.maximize(n_iter=10)
print("Final result:", optimizer.max)
if __name__ == "__main__":
data, targets = get_data()
print(Colours.yellow("--- Optimizing SVM ---"))
optimize_svc(data, targets)
print(Colours.green("--- Optimizing Random Forest ---"))
optimize_rfc(data, targets)
调参贝叶斯优化(BayesianOptimization)的更多相关文章
- DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化
DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183 版权声明:本文为博主原创文章,遵循CC 4.0 BY ...
- 贝叶斯优化(Bayesian Optimization)只需要看这一篇就够了,算法到python实现
贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷 ...
- 贝叶斯优化(Bayesian Optimization)深入理解
目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两 ...
- 基于贝叶斯优化的超参数tuning
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/ 贝叶斯优化:使用高斯过程作为代理函数, ...
- 贝叶斯优化 Bayesian Optimization
贝叶斯优化 Bayesian Optimization 2018年07月02日 22:28:06 余生最年轻 阅读数 4821更多 分类专栏: 机器学习 版权声明:本文为博主原创文章,遵循CC 4 ...
- 非参贝叶斯(Bayesian Non-parameter)初步
0. motivations 如何确定 GMM 模型的 k,既观察到的样本由多少个高斯分布生成.由此在数据属于高维空间中时,根本就无法 visualize,更加难以建立直观,从而很难确定 k,高斯分布 ...
- 【转载】 自动化机器学习(AutoML)之自动贝叶斯调参
原文地址: https://blog.csdn.net/linxid/article/details/81189154 ---------------------------------------- ...
- [调参]CV炼丹技巧/经验
转自:https://www.zhihu.com/question/25097993 我和@杨军类似, 也是半路出家. 现在的工作内容主要就是使用CNN做CV任务. 干调参这种活也有两年时间了. 我的 ...
- Deep learning网络调参技巧
参数初始化 下面几种方式,随便选一个,结果基本都差不多.但是一定要做.否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题.n_in为网络的输入大小,n_out为网络的输出大小,n为n_i ...
随机推荐
- 天梯赛练习题L2-006. 树的遍历
题目链接 已知一棵树的后序遍历顺序和中序遍历顺序,求层次遍历的顺序: 树的四种遍历: 先序遍历:先访问根节点,再访问左子树,最后访问右子树 中序遍历:先访问左子树,再访问根节点,最后访问右子树 后序遍 ...
- 爬虫中报 SSLError 错误
- mysql(七)
多表查询: 显示内连接: select 字段列表 from 表名1 inner join 表名1 on 条件 * inner 可忽略 select * from student inner j ...
- pdf下载速度
- 2019年IntelliJ IDEA 最新注册码,亲测可用(截止到2020年3月11日)
2019年IntelliJ IDEA 最新注册码(截止到2020年3月11日) 操作步骤: 第一步: 修改 hosts 文件 ~~~ 在hosts文件中,添加以下映射关系: 0.0.0.0 acco ...
- 手动创建Oracle实例
手工建库步骤 Step 1: Specify an Instance Identifier (SID)(指定一个实例的标识符SID)Step 2: Ensure That the Required E ...
- 解决页面使用ifrmae后,在session失效后登录页面在子页面中显示(子窗体出现父窗体)
在登录页面中添加js判断当前页面是否是父页面,诺不是则父页面跳转至登录页面. <script type="text/javascript"> //解决登录后多个父窗体问 ...
- supervisor配置详解(转)
有阵子没写博客了,这段时间一直在研究python django框架和前端相关的东西.楼主学通信的,对web这一块啥也不懂,学了一个礼拜django,接着学了2个礼拜前端,感觉还是做不出来一个好看的页面 ...
- (3)打造简单OS-MBR引导区转移加载简单程序(突破512限制)
在第一节<(1)汇编写入引导区,虚拟机启动步骤>中讲解到一个简单屏幕显示一川字符串,第二节讲到BIOS启动过程! 第一节中基本原理就是将那个汇编代码用nasm汇编器进行汇编成二进制,然后把 ...
- 浏览器对象模型BOM总结
BOMwindows对象document对象location对象screen对象 Windows对象 1.窗口操作 移动指定的距离:window.moveBy(10,20); //向右移动10像素,向 ...