Python Pandas分组聚合
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数。
apply(),applymap()和map()
apply()和applymap()是DataFrame的函数,map()是Series的函数。
apply()的操作对象是DataFrame的一行或者一列数据,applymap()是DataFrame的每一个元素。map()也是Series中的每一个元素。
apply()对dataframe的内容进行批量处理, 这样要比循环来得快。如df.apply(func,axis=0,.....) func:定义的函数,axis=0时为对列操作,=1时为对行操作。
map()和python内建的没啥区别,如df['one'].map(sqrt)。
import numpy as np
from pandas import Series, DataFrame frame = DataFrame(np.random.randn(4, 3),
columns = list('bde'),
index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print frame
print np.abs(frame)
print f = lambda x: x.max() - x.min()
print frame.apply(f)
print frame.apply(f, axis = 1)
def f(x):
return Series([x.min(), x.max()], index = ['min', 'max'])
print frame.apply(f)
print print 'applymap和map'
_format = lambda x: '%.2f' % x
print frame.applymap(_format)
print frame['e'].map(_format)
Groupby
Groupby是Pandas中最为常用和有效的分组函数,有sum()、count()、mean()等统计函数。
groupby 方法返回的 DataFrameGroupBy 对象实际并不包含数据内容,它记录的是df['key1']
的中间数据。当你对分组数据应用函数或其他聚合运算时,pandas 再依据 groupby 对象内记录的信息对 df 进行快速分块运算,并返回结果。
df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],
'key2': ['one', 'two', 'one', 'two', 'one'],
'data1': np.random.randn(5),
'data2': np.random.randn(5)})
grouped = df.groupby(df['key1'])
print grouped.mean()
df.groupby(lambda x:'even' if x%2==0 else 'odd').mean() #通过函数分组
聚合agg()
对于分组的某一列(行)或者多个列(行,axis=0/1),应用agg(func)可以对分组后的数据应用func函数。例如:用grouped['data1'].agg('mean')也是对分组后的’data1’列求均值。当然也可以同时作用于多个列(行)和使用多个函数上。
df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],
'key2': ['one', 'two', 'one', 'two', 'one'],
'data1': np.random.randn(5),
'data2': np.random.randn(5)})
grouped = df.groupby('key1')
print grouped.agg('mean') data1 data2
key1
a 0.749117 0.220249
b -0.567971 -0.126922
apply()和agg()功能上差不多,apply()常用来处理不同分组的缺失数据的填充和top N的计算,会产生层级索引。
而agg可以同时传入多个函数,作用于不同的列。
df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],
'key2': ['one', 'two', 'one', 'two', 'one'],
'data1': np.random.randn(5),
'data2': np.random.randn(5)})
grouped = df.groupby('key1')
print grouped.agg(['sum','mean'])
print grouped.apply(np.sum) #apply的在这里同样适用,只是不能传入多个,这两个函数基本是可以通用的。
data1 data2
sum mean sum mean
key1
a 2.780273 0.926758 -1.561696 -0.520565
b -0.308320 -0.154160 -1.382162 -0.691081
data1 data2 key1 key2
key1
a 2.780273 -1.561696 aaa onetwoone
b -0.308320 -1.382162 bb onetwo
apply和agg功能上基本是相近的,但是多个函数的时候还是agg比较方便。
apply本身的自由度很高,如果分组之后不做聚合操作紧紧是一些观察的时候,apply就有用武之地了。
print grouped.apply(lambda x: x.describe()) data1 data2
key1
a count 3.000000 3.000000
mean -0.887893 -1.042878
std 0.777515 1.551220
min -1.429440 -2.277311
25% -1.333350 -1.913495
50% -1.237260 -1.549679
75% -0.617119 -0.425661
max 0.003021 0.698357
b count 2.000000 2.000000
mean -0.078983 0.106752
std 0.723929 0.064191
min -0.590879 0.061362
25% -0.334931 0.084057
50% -0.078983 0.106752
75% 0.176964 0.129447
max 0.432912 0.152142
此外apply还能改变返回数据的维度。
http://pandas.pydata.org/pandas-docs/stable/groupby.html
此外还有透视表pivot_table ,交叉表crosstab ,但是我没用过。
Python Pandas分组聚合的更多相关文章
- Pandas 分组聚合
# 导入相关库 import numpy as np import pandas as pd 创建数据 index = pd.Index(data=["Tom", "Bo ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- pandas分组聚合案例
美国2012年总统候选人政治献金数据分析 导入包 import numpy as np import pandas as pd from pandas import Series,DataFrame ...
- DataAnalysis-Pandas分组聚合
title: Pandas分组聚合 tags: 数据分析 python categories: DataAnalysis toc: true date: 2020-02-10 16:28:49 Des ...
- pandas分组和聚合
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:s ...
- Python之数据聚合与分组运算
Python之数据聚合与分组运算 1. 关系型数据库方便对数据进行连接.过滤.转换和聚合. 2. Hadley Wickham创建了用于表示分组运算术语"split-apply-combin ...
- Pandas分组运算(groupby)修炼
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...
- Python Pandas的使用 !!!!!详解
Pandas是一个基于python中Numpy模块的一个模块 Python在数据处理和准备⽅⾯⼀直做得很好,但在数据分析和建模⽅⾯就差⼀些.pandas帮助填补了这⼀空⽩,使您能够在Python中执 ...
- Python pandas快速入门
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...
随机推荐
- java代理模式之静态代理
作为一个初级开发者,可能不会接触到代理模式,但是在很多框架的使用中都不知不觉使用了代理模式,比如servlet的过滤器链,spring的AOP,以及spring mvc的拦截器等.所以了解代理模式对于 ...
- Vue.js 入门指南之“前传”(含sublime text 3 配置)
题记:关注Vue.js 很久了,但就是没有动手写过一行代码,今天准备入手,却发现自己比菜鸟还菜,于是四方寻找大牛指点,才终于找到了入门的“入门”,就算是“入门指南”的“前传”吧.此文献给跟我一样“白痴 ...
- Mac下安装ElasticSearch
简单记录一下安装ES的过程,给小小白们提供一下参考: 下载安装包 https://www.elastic.co/downloads/elasticsearch建议下载2.3.2版本,最新的5.0.0版 ...
- 【笔记】LAMP 环境无脑安装配置 Centos 6.3
p.p1 { margin: 0.0px 0.0px 5.0px 0.0px; font: 12.0px Times; color: #ff2500 } p.p2 { margin: 0.0px 0. ...
- C++实现DNS域名解析
一.概述 现在来搞定DNS域名解析,其实这是前面一篇文章C++实现Ping里面的遗留问题,要干的活是ping的过程中画红线的部分: cmd下域名解析的命令是nslookup,比如“nslookup w ...
- 浅谈Java的匿名类
在实际的项目中看到一个很奇怪的现象,Java可以直接new一个接口,然后在new里面粗暴的加入实现代码.就像下面这样.那么问题来了,new出来的对象没有实际的类作为载体,这不是很奇怪吗? 思考以下代码 ...
- 关于WCF测试时出现无法从***获取元数据问题
在我们已经创建成功一个WCF服务后,通过本机localhost访问和测试均没有任何问题.但是寄宿在IIS/其他平台下时便会出现以下的错误信息 1.使用WCF Test Client错误 2.通过C#引 ...
- PHP中的数据库三、redis
h2:first-child, body>h1:first-child, body>h1:first-child+h2, body>h3:first-child, body>h ...
- Appium scroll 滑动查找
首先看uiautomator如何实现滑动查找 UiScrollable scrollView = new UiScrollable(new UiSelector().className("a ...
- 《Note --- Unreal 4 --- behavior tree》
Web: https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html Test project: D:\En ...