1.  标势、矢势:  $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf E}=-\cfrac{\p {\bf B}}{\p t} =\rot \cfrac{\p {\bf A}}{\p t}&\ra \exists\ \phi,\st -\n \phi={\bf E}+\cfrac{\p {\bf A}}{\p t}. \eea \eeex$$ 称 $\phi,{\bf A}$ 分别为电磁场的标势、矢势. 注意, 若 $\phi,{\bf A}$ 为电磁场的标势、矢势, 则 $$\bee\label{1.6.2:trans} \bea \phi'&=\phi- \cfrac{\p\psi}{\p t},\\ {\bf A}'&={\bf A}+\n \psi \eea \eee$$ 也是电磁场的标势、矢势. \eqref{1.6.2:trans} 称为规范变换. 虽然势有规范不定性, 但场在规范变换下不变.

2.  电磁场的标势、矢势 $\phi,{\bf A}$ 满足的方程: $$\bee\label{1. 6. 2:eq} \bea \cfrac{1}{c^2}\cfrac{\p^2\phi}{\p t^2}-\lap\phi&=\cfrac{\rho}{\ve_0},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}&=\mu_0{\bf j}.  \eea \eee$$ 即 $\phi,{\bf A}$ 分别满足以 $\rho,{\bf j}$ 为源的波动方程.

(1)  在 \eqref{1. 6. 2:eq} 的推导中须用到 Lorentz 条件: $$\bee\label{1. 6. 2:Lorentz} \Div{\bf A}+\cfrac{1}{c^2}\cfrac{\p\phi}{\p t}=0.  \eee$$ 而这可通过规范变换得到.

(2)  满足 \eqref{1. 6. 2:Lorentz} 的规范变换称为 Lorentz 规范. 另外, 称满足 $$\bex \Div{\bf A}=0 \eex$$ 的规范变换为 Coulomb 规范.

[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势的更多相关文章

  1. [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

    1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$ 2.  动量守恒方程 $$\bex \cfrac{\p }{\p ...

  2. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  3. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  10. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

随机推荐

  1. CSS---文档流布局 | 脱标-postion-zindex | 脱标-浮动

    一.css文档流布局概念 1.1,什么是标准文档流 1.2,标准文档流下有哪些微观现象 二.CSS---position属性 2.1,position:relative 2.2,position:fi ...

  2. .net core iis配置

    微软官方教程: https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x 在vs中创建.net cor ...

  3. 【Git】+ 新建+删除+上传+覆盖

    上传代码时邮箱格式不符合:https://blog.csdn.net/u012558695/article/details/64921922 在本地新建一个分支: git branch newBran ...

  4. 【原创】IDEA一定要改的八条配置

    引言 坦白说,我很少写这种操作类型的文章.因为这种文章没啥新意,大家操作步骤肯定是一样的.然而,我答应了我的同事小阳,给她出一篇!毕竟人家打算从Eclipse转IDEA了,于是以示鼓励,写一篇给她! ...

  5. BZOJ4034: [HAOI2015]树上操作

    这题把我写吐了...代码水平还是太弱鸡了啊... 这题就是先给你一些点,以及点权.然后给你一些向边构成一颗树,树的根节点是1. 然后给定三个操作 第一个是把指定节点的权值+W 第二个是把指定节点X为根 ...

  6. DAY10、函数的参数

    一.实参:为形参传递值 调用函数时,实参可以由常量,变量,表达式三种的组合 1.位置实参:必须按照位置的顺序,从左到右为形参传递值 fn1(10, 20, 30) fn1(30, 20, 10) 2. ...

  7. Amazon SNS (Simple Notification Service) Using C# and Visual Studio

    SNS (Amazon Simple Notification Services) Amazon SNS (Amazon Simple Notification Services) is a noti ...

  8. [SimplePlayer] 7. 多线程处理

    在前面的文章中,我们分别实现了视频图像解码.播放,音频解码.播放,现在则需要把这些功能组合起来.总体上来说,整个程序的功能可以分为两条线路:视频以及音频,两条线之间除了后续的同步操作之外基本没有任何关 ...

  9. property与x.setter与x.deleter

    #测试property,x.setter,x.deleter class Test1: def __init__(self): self.__private = "alex" @p ...

  10. 关于sha1加密与md5加密

    1.区别 Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射,也就是, ...