[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势
1. 标势、矢势: $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf E}=-\cfrac{\p {\bf B}}{\p t} =\rot \cfrac{\p {\bf A}}{\p t}&\ra \exists\ \phi,\st -\n \phi={\bf E}+\cfrac{\p {\bf A}}{\p t}. \eea \eeex$$ 称 $\phi,{\bf A}$ 分别为电磁场的标势、矢势. 注意, 若 $\phi,{\bf A}$ 为电磁场的标势、矢势, 则 $$\bee\label{1.6.2:trans} \bea \phi'&=\phi- \cfrac{\p\psi}{\p t},\\ {\bf A}'&={\bf A}+\n \psi \eea \eee$$ 也是电磁场的标势、矢势. \eqref{1.6.2:trans} 称为规范变换. 虽然势有规范不定性, 但场在规范变换下不变.
2. 电磁场的标势、矢势 $\phi,{\bf A}$ 满足的方程: $$\bee\label{1. 6. 2:eq} \bea \cfrac{1}{c^2}\cfrac{\p^2\phi}{\p t^2}-\lap\phi&=\cfrac{\rho}{\ve_0},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}&=\mu_0{\bf j}. \eea \eee$$ 即 $\phi,{\bf A}$ 分别满足以 $\rho,{\bf j}$ 为源的波动方程.
(1) 在 \eqref{1. 6. 2:eq} 的推导中须用到 Lorentz 条件: $$\bee\label{1. 6. 2:Lorentz} \Div{\bf A}+\cfrac{1}{c^2}\cfrac{\p\phi}{\p t}=0. \eee$$ 而这可通过规范变换得到.
(2) 满足 \eqref{1. 6. 2:Lorentz} 的规范变换称为 Lorentz 规范. 另外, 称满足 $$\bex \Div{\bf A}=0 \eex$$ 的规范变换为 Coulomb 规范.
[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势的更多相关文章
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- Linux Mysql 每天定时备份
1.创建脚本 dbback.sh,内容如下: #!/bin/bash mysqldump -uroot -p123456 hexin>/work/db_back/hexin_$(date +%Y ...
- 【技术文章】《快速上手nodejs》
本文地址:http://www.cnblogs.com/aiweixiao/p/8294814.html 原文地址: 扫码关注微信公众号 1.写在前面 nodejs快速上手 nodejs使ja ...
- 生成文件的MD5值
import hashlib #########测试################# m = hashlib.md5() m.update(b"hello") m.update( ...
- Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)
I wrote a blog post about how LinkedIn uses Apache Kafka as a central publish-subscribe log for inte ...
- Nginx 的 access log 如何以 json 形式记录?
Nginx 的 access log 默认是以空格分隔的字符串形式记录的,格式如下 log_format proxy '[$time_local] $remote_addr ' '$protocol ...
- iis .apk .ipa下载设置
.apk .ipa无法下载 解决步骤:1).打开IIS服务管理器,找到服务器,右键-属性,打开IIS服务属性:2.单击MIME类型下的“MIME类型”按钮,打开MIME类型设置窗口:3).单击“新建” ...
- scipy.stats.multivariate_normal的使用
参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...
- Kafka 详解(二)------集群搭建
这里通过 VMware ,我们安装了三台虚拟机,用来搭建 kafka集群,虚拟机网络地址如下: hostname ipaddress ...
- Set.js--创建无重复值的无序集合
Set 集合,不同于 Array,是一种没有重复值的集合. 以下代码出自于<JavaScript 权威指南(第六版)>P217,注意:这里并不是指 es6 / es2015 中的 Set ...
- SpringCloud(8)微服务监控Spring Boot Admin
1.简介 Spring Boot Admin 是一个管理和监控Spring Boot 应用程序的开源软件.Spring Boot Admin 分为 Server 端和 Client 端,Spring ...