题解:

不会FWT,只能水40分了

首先,要观察出的性质就是:

选出的集合要满足所有数亦或等于0,而在其中任选子集都可以满足条件,答案就等于sigma(2^size(s))

这样dp一波显然就可以O(na)了(由性质可知转移到新状态*2)

然后考虑数很少的

发现同一个数是奇数就是ai偶数就是0

所以仍旧这么dp一下 也就是转移的时候乘(2^1+2^3+2^5....) 不变的同理

C. 【UNR #2】黎明前的巧克力的更多相关文章

  1. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  2. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  3. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  4. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

  5. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  6. 「UNR#2」黎明前的巧克力

    「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...

  7. 【UNR #2】黎明前的巧克力 解题报告

    [UNR #2]黎明前的巧克力 首先可以发现,等价于求 xor 和为 \(0\) 的集合个数,每个集合的划分方案数为 \(2^{|S|}\) ,其中 \(|S|\) 为集合的大小 然后可以得到一个朴素 ...

  8. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  9. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  10. @uoj - 310@ 【UNR #2】黎明前的巧克力

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Evan 和 Lyra 都是聪明可爱的孩子,两年前,Evan 开 ...

随机推荐

  1. Java编程思想 学习笔记4

    四.控制执行流程 1.true和false 所有条件语句都利用条件表达式的真或假来决定执行路径.注意Java不允许我们将一个数字作为布尔值使用. 2.if-else 3.迭代 while.do-whi ...

  2. WebSocket实战之——JavaScript例子

    一.详细代码案例 详细解读一个简单html5 WebSocket的Js实例教程,附带完整的javascript websocket实例源码,以及实例代码效果演示页面,并对本实例的核心代码进行了深入解读 ...

  3. Error: failed to execute 'C:\Keil\ARM\ARMCC'的解决办法

    在KEIL新建工程时,容易出现该问题,我查了一些资料,最终找到该问题解决方法: 第一步:在keil里的菜单栏依次选择Project->Manage->Components,Environm ...

  4. DotNetBar TextBoxDropDown响应按键事件

    textBoxDropDownHelp.TextBox.KeyDown += new KeyEventHandler(textBoxDropDownHelp_KeyDown); private voi ...

  5. 1.springboot:入门程序

    一.Spring Boot 简介 官网英文: Spring Boot makes it easy to create stand-alone, production-grade Spring base ...

  6. "ls: cannot access sys/class/ieee80211: No such file or directory" .

    1- Do update and upgrade as always. apt-get update && apt-get upgrade && apt-get dis ...

  7. 自己对Java的一些认识

    作为一个理论性比较强的学生,谈一下这段时间对java以及对程序设计的理解 java相对于其它语言有几个特点,一个是面向对象,一个是强类型          首先谈谈面向对象,关于类和对象,这个一定要有 ...

  8. python Twisted安装报错

    系统 mac pro 错误信息: IOError: [Errno 63] File name too long: '/var/folders/72/byjy11cs0dj_z3rjtxnj_nn000 ...

  9. linux bash的重定向

    cnblogs原创 下面几种bash重定向各表示什么意思? find / -name passwd > /dev/null >& > /dev/null find / -na ...

  10. SVN备份还原

    本文是对SVN备份还原的一个简单记录 /*千万不能用VisualSVN Server PowerShell,否则在还原Load的时候会发生错误E140001,具体参考http://stackoverf ...