Automatic Parameter Tuning of Motion Planning Algorithms

运动规划算法的自动参数整定

Jos´e Cano, Yiming Yang, Bruno Bodin, Vijay Nagarajan, and Michael O’Boyle

张宁 Automatic Parameter Tuning of Motion Planning Algorithms
 https://pan.baidu.com/s/17rNCxNp3Lqbtqt-sO1xhiw

张宁

Abstract—Motionplanningalgorithmsattempttofindagood compromise between planning time and quality of solution. Due to their heuristic nature, they are typically configured with several parameters. In this paper we demonstrate that, in many scenarios, the widely used default parameter values are not ideal. However, finding the best parameters to optimise some metric(s) is not trivial because the size of the parameter space can be large. We evaluate and compare the efficiency of four different methods (i.e. random sampling, AUC-Bandit, random forest,andbayesianoptimisation)totunetheparametersoftwo motion planning algorithms, BKPIECE and RRT-connect. We present a table-top-reaching scenario where the seven degreesof-freedom KUKA LWR robotic arm has to move from an initial to a goal pose in the presence of several objects in the environment. We show that the best methods for BKPIECE (AUC-Bandit) and RRT-Connect (random forest) improve the performance by 4.5x and 1.26x on average respectively. Then, we generate a set of random scenarios of increasing complexity, and we observe that optimal parameters found in simple environments perform well in more complex scenarios. Finally, we findthatthetimerequiredtoevaluateparameterconfigurations can be reduced by more than 2/3 with low error. Overall, our results demonstrate that for a variety of motion planning problems it is possible to find solutions that significantly improve the performance over default configurations while requiring very reasonable computation times.

运动规划算法试图在规划时间和解决方案质量之间做出妥协。由于它们具有启发性,它们通常具有多个参数。在本文中,我们证明了在许多情况下,广泛使用的默认参数值并不理想。但是,找到优化某些度量标准的最佳参数并非易事,因为参数空间的大小可能很大。我们评估和比较四种不同方法(即随机抽样,AUC-Bandit,随机森林和贝叶斯优化)的效率,以及两个运动规划算法,BKPIECE和RRT-connect的参数。我们提出了一种桌面式的场景,其中七个自由度的KUKA LWR机器人手臂必须在环境中存在多个物体的情况下从初始姿势移动到目标姿势。我们表明,BKPIECE(AUC-Bandit)和RRT-Connect(随机森林)的最佳方法分别平均提高了4.5x和1.26x的性能。然后,我们生成一组增加复杂度的随机场景,并且我们观察到在简单环境中找到的最佳参数在更复杂的场景中表现良好。最后,我们发现评估参数配置所需的时间可以减少超过2/3而且误差很小。总的来说,我们的结果表明,对于各种运动规划问题,可以找到在默认配置下显着提高性能同时需要非常合理的计算时间的解决方案。

泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms的更多相关文章

  1. 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

    Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...

  2. 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

    张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...

  3. 论文笔记系列-Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion

    论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路 ...

  4. 11g新特性-自动sql调优(Automatic SQL Tuning)

    11g新特性-自动sql调优(Automatic SQL Tuning) 在Oracle 10g中,引进了自动sql调优特性.此外,ADDM也会监控捕获高负载的sql语句. 在Oracle 11g中, ...

  5. 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat

    张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...

  6. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  7. Grassfire算法- 运动规划(Motion planning)

     Grassfire算法: 一.概念 这个算法是做图像处理的抽骨架处理,目的是求出图像的骨架,可以想象一片与物体形状相同的草,沿其外围各点同时点火.当火势向内蔓延,向前推进的火线相遇处各点的轨迹就是中 ...

  8. Motion Planning 是什么

    前言与引用 这一个呢,主要是自己突然看一篇论文的时候不知道 为什么他提出的方法对于规划来说就是好的,规划又应该分为哪几个部分,解决的是哪几个部分的问题?带着这个问题,我就去搜:Motion Plann ...

  9. 【论文阅读】Motion Planning through policy search

    想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔 ...

随机推荐

  1. 基于ubuntu搭建 Discuz 论坛

    系统要求:Ubuntu 16.04.1 LTS 64 位操作系统 安装 Apache2 ubuntu 需要安装 Apache2 ,使用 apt-get 安装 Apache2(安装好后,您可以通过访问实 ...

  2. Android 使用WebView加载含有Canvas的页面截屏处理

    无法截屏主要原因是webview渲染方式所导致:只需要AndroidManifest.xml中设置属性Android:hardwareAccelerated=”false”.

  3. mysql常用的一些修改命令

    修改表字段名称: alter table  table_name change column column_name_old  column_name_new column_type; mysql注释 ...

  4. 深入理解C++中public、protected及private用法

    深入理解C++中public.protected及private用法   这篇文章主要介绍了C++中public.protected及private用法,对于C++面向对象程序设计来说是非常重要的概念 ...

  5. win8下C盘不能读写的解决方案[zz]

    做系统安全的时候发现了这个/setintegritylevel参数,没有找到更多资料,找到此文,看来这个参数有点神奇哟!我一个同事遇到了这个问题,主要症状:1.C 盘文件不能修改2.C 盘不能新建文件 ...

  6. 通过MTK迁移Mysql到EDB实战指南

    1.1 迁移准备 下图是Migration toolkit(MTK)可使用的迁移功能 1 查看一下迁移源数据库testdb信息.共三张表 watermark/2/text/aHR0cDovL2Jsb2 ...

  7. Fluent动网格【4】:DEFINE_CG_MOTION宏实例

    DEFINE_CG_MOTION宏通常用于定义刚体部件的运动.本文以一个简单的案例描述DEFINE_CG_MOTION的使用方法. 案例描述 本次计算的案例如图所示.在计算域中有一个刚体块(图中的小正 ...

  8. 【Spark 深入学习 04】再说Spark底层运行机制

    本节内容 · spark底层执行机制 · 细说RDD构建过程 · Job Stage的划分算法 · Task最佳计算位置算法 一.spark底层执行机制 对于Spark底层的运行原理,找到了一副很好的 ...

  9. SoapUI5.0创建WebService接口模拟服务端(转)

    转载自:https://blog.csdn.net/a19881029/article/details/26348627 使用SoapUI创建WebService接口模拟服务端需要接口描述文件 Mat ...

  10. 一键解包/打包boot.img/recovery.img工具(高通/MTK双版 支持android 5.1以上)

    下载地址: 链接: https://pan.baidu.com/s/1hsA2oWc 密码: skdx