泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms
Jos´e Cano, Yiming Yang, Bruno Bodin, Vijay Nagarajan, and Michael O’Boyle
张宁 Automatic Parameter Tuning of Motion Planning Algorithms
https://pan.baidu.com/s/17rNCxNp3Lqbtqt-sO1xhiw
张宁
Abstract—Motionplanningalgorithmsattempttofindagood compromise between planning time and quality of solution. Due to their heuristic nature, they are typically configured with several parameters. In this paper we demonstrate that, in many scenarios, the widely used default parameter values are not ideal. However, finding the best parameters to optimise some metric(s) is not trivial because the size of the parameter space can be large. We evaluate and compare the efficiency of four different methods (i.e. random sampling, AUC-Bandit, random forest,andbayesianoptimisation)totunetheparametersoftwo motion planning algorithms, BKPIECE and RRT-connect. We present a table-top-reaching scenario where the seven degreesof-freedom KUKA LWR robotic arm has to move from an initial to a goal pose in the presence of several objects in the environment. We show that the best methods for BKPIECE (AUC-Bandit) and RRT-Connect (random forest) improve the performance by 4.5x and 1.26x on average respectively. Then, we generate a set of random scenarios of increasing complexity, and we observe that optimal parameters found in simple environments perform well in more complex scenarios. Finally, we findthatthetimerequiredtoevaluateparameterconfigurations can be reduced by more than 2/3 with low error. Overall, our results demonstrate that for a variety of motion planning problems it is possible to find solutions that significantly improve the performance over default configurations while requiring very reasonable computation times.
泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms的更多相关文章
- 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle
Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...
- 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions
张宁 Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...
- 论文笔记系列-Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion
论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路 ...
- 11g新特性-自动sql调优(Automatic SQL Tuning)
11g新特性-自动sql调优(Automatic SQL Tuning) 在Oracle 10g中,引进了自动sql调优特性.此外,ADDM也会监控捕获高负载的sql语句. 在Oracle 11g中, ...
- 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat
张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
- Grassfire算法- 运动规划(Motion planning)
Grassfire算法: 一.概念 这个算法是做图像处理的抽骨架处理,目的是求出图像的骨架,可以想象一片与物体形状相同的草,沿其外围各点同时点火.当火势向内蔓延,向前推进的火线相遇处各点的轨迹就是中 ...
- Motion Planning 是什么
前言与引用 这一个呢,主要是自己突然看一篇论文的时候不知道 为什么他提出的方法对于规划来说就是好的,规划又应该分为哪几个部分,解决的是哪几个部分的问题?带着这个问题,我就去搜:Motion Plann ...
- 【论文阅读】Motion Planning through policy search
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔 ...
随机推荐
- 基于ubuntu搭建 Discuz 论坛
系统要求:Ubuntu 16.04.1 LTS 64 位操作系统 安装 Apache2 ubuntu 需要安装 Apache2 ,使用 apt-get 安装 Apache2(安装好后,您可以通过访问实 ...
- Android 使用WebView加载含有Canvas的页面截屏处理
无法截屏主要原因是webview渲染方式所导致:只需要AndroidManifest.xml中设置属性Android:hardwareAccelerated=”false”.
- mysql常用的一些修改命令
修改表字段名称: alter table table_name change column column_name_old column_name_new column_type; mysql注释 ...
- 深入理解C++中public、protected及private用法
深入理解C++中public.protected及private用法 这篇文章主要介绍了C++中public.protected及private用法,对于C++面向对象程序设计来说是非常重要的概念 ...
- win8下C盘不能读写的解决方案[zz]
做系统安全的时候发现了这个/setintegritylevel参数,没有找到更多资料,找到此文,看来这个参数有点神奇哟!我一个同事遇到了这个问题,主要症状:1.C 盘文件不能修改2.C 盘不能新建文件 ...
- 通过MTK迁移Mysql到EDB实战指南
1.1 迁移准备 下图是Migration toolkit(MTK)可使用的迁移功能 1 查看一下迁移源数据库testdb信息.共三张表 watermark/2/text/aHR0cDovL2Jsb2 ...
- Fluent动网格【4】:DEFINE_CG_MOTION宏实例
DEFINE_CG_MOTION宏通常用于定义刚体部件的运动.本文以一个简单的案例描述DEFINE_CG_MOTION的使用方法. 案例描述 本次计算的案例如图所示.在计算域中有一个刚体块(图中的小正 ...
- 【Spark 深入学习 04】再说Spark底层运行机制
本节内容 · spark底层执行机制 · 细说RDD构建过程 · Job Stage的划分算法 · Task最佳计算位置算法 一.spark底层执行机制 对于Spark底层的运行原理,找到了一副很好的 ...
- SoapUI5.0创建WebService接口模拟服务端(转)
转载自:https://blog.csdn.net/a19881029/article/details/26348627 使用SoapUI创建WebService接口模拟服务端需要接口描述文件 Mat ...
- 一键解包/打包boot.img/recovery.img工具(高通/MTK双版 支持android 5.1以上)
下载地址: 链接: https://pan.baidu.com/s/1hsA2oWc 密码: skdx