Automatic Parameter Tuning of Motion Planning Algorithms

运动规划算法的自动参数整定

Jos´e Cano, Yiming Yang, Bruno Bodin, Vijay Nagarajan, and Michael O’Boyle

张宁 Automatic Parameter Tuning of Motion Planning Algorithms
 https://pan.baidu.com/s/17rNCxNp3Lqbtqt-sO1xhiw

张宁

Abstract—Motionplanningalgorithmsattempttofindagood compromise between planning time and quality of solution. Due to their heuristic nature, they are typically configured with several parameters. In this paper we demonstrate that, in many scenarios, the widely used default parameter values are not ideal. However, finding the best parameters to optimise some metric(s) is not trivial because the size of the parameter space can be large. We evaluate and compare the efficiency of four different methods (i.e. random sampling, AUC-Bandit, random forest,andbayesianoptimisation)totunetheparametersoftwo motion planning algorithms, BKPIECE and RRT-connect. We present a table-top-reaching scenario where the seven degreesof-freedom KUKA LWR robotic arm has to move from an initial to a goal pose in the presence of several objects in the environment. We show that the best methods for BKPIECE (AUC-Bandit) and RRT-Connect (random forest) improve the performance by 4.5x and 1.26x on average respectively. Then, we generate a set of random scenarios of increasing complexity, and we observe that optimal parameters found in simple environments perform well in more complex scenarios. Finally, we findthatthetimerequiredtoevaluateparameterconfigurations can be reduced by more than 2/3 with low error. Overall, our results demonstrate that for a variety of motion planning problems it is possible to find solutions that significantly improve the performance over default configurations while requiring very reasonable computation times.

运动规划算法试图在规划时间和解决方案质量之间做出妥协。由于它们具有启发性,它们通常具有多个参数。在本文中,我们证明了在许多情况下,广泛使用的默认参数值并不理想。但是,找到优化某些度量标准的最佳参数并非易事,因为参数空间的大小可能很大。我们评估和比较四种不同方法(即随机抽样,AUC-Bandit,随机森林和贝叶斯优化)的效率,以及两个运动规划算法,BKPIECE和RRT-connect的参数。我们提出了一种桌面式的场景,其中七个自由度的KUKA LWR机器人手臂必须在环境中存在多个物体的情况下从初始姿势移动到目标姿势。我们表明,BKPIECE(AUC-Bandit)和RRT-Connect(随机森林)的最佳方法分别平均提高了4.5x和1.26x的性能。然后,我们生成一组增加复杂度的随机场景,并且我们观察到在简单环境中找到的最佳参数在更复杂的场景中表现良好。最后,我们发现评估参数配置所需的时间可以减少超过2/3而且误差很小。总的来说,我们的结果表明,对于各种运动规划问题,可以找到在默认配置下显着提高性能同时需要非常合理的计算时间的解决方案。

泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms的更多相关文章

  1. 泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

    Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranj ...

  2. 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

    张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...

  3. 论文笔记系列-Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion

    论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路 ...

  4. 11g新特性-自动sql调优(Automatic SQL Tuning)

    11g新特性-自动sql调优(Automatic SQL Tuning) 在Oracle 10g中,引进了自动sql调优特性.此外,ADDM也会监控捕获高负载的sql语句. 在Oracle 11g中, ...

  5. 泡泡一分钟:Optimal Trajectory Generation for Quadrotor Teach-And-Repeat

    张宁 Optimal Trajectory Generation for Quadrotor Teach-And-Repeat链接:https://pan.baidu.com/s/1x0CmuOXiL ...

  6. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  7. Grassfire算法- 运动规划(Motion planning)

     Grassfire算法: 一.概念 这个算法是做图像处理的抽骨架处理,目的是求出图像的骨架,可以想象一片与物体形状相同的草,沿其外围各点同时点火.当火势向内蔓延,向前推进的火线相遇处各点的轨迹就是中 ...

  8. Motion Planning 是什么

    前言与引用 这一个呢,主要是自己突然看一篇论文的时候不知道 为什么他提出的方法对于规划来说就是好的,规划又应该分为哪几个部分,解决的是哪几个部分的问题?带着这个问题,我就去搜:Motion Plann ...

  9. 【论文阅读】Motion Planning through policy search

    想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔 ...

随机推荐

  1. MySQL 各级别事务的实现机制

    MySQL 各级别事务的实现机制在处理cnctp项目已合包裹状态同步的问题时,发现读包裹状态和对包裹状态的更新不在一个事务内,我提出是否会因为消息并发导致状态一致性问题.在和同事讨论的过程中,我们开始 ...

  2. sublime text3怎么安装Package Control

    sublime text3地址:https://packagecontrol.io/installation#st3 1.打开Preferences——Browse Packages,打开一个文件夹C ...

  3. Nginx 指令目录(中文版)

    指令大全 accept_mutex accept_mutex_delay access_log add_after_body add_before_body add_header addition_t ...

  4. ansible执行shell模块和command模块报错| FAILED | rc=127 >> /bin/sh: lsof: command not found和| rc=2 >> [Errno 2] No such file or directory

    命令: ansible -i hosts_20 st  -m shell -a 'service zabbix_agentd star'  -K --become ansible -i hosts_2 ...

  5. [k8s] 最简单的集群小案例-记录本(tomcat+mysql)

    启动一个简单的集群: tomcat+mysql myweb-pod.yaml apiVersion: v1 kind: Pod metadata: name: myweb labels: app: m ...

  6. 详解CUDA编程

    CUDA 是 NVIDIA 的 GPGPU 模型,它使用 C 语言为基础,可以直接以大多数人熟悉的 C 语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构.” 编者注: ...

  7. 微信小程序跳转分析

    对于路由的触发方式以及页面生命周期函数如下: 路由方式 触发时机 路由前页面 路由后页面 初始化 小程序打开的第一个页面   onLoad, onShow 打开新页面 调用 API wx.naviga ...

  8. D3.js学习

    // 1.选择d3.select('p')d3.selectAll('p')d3.select('.txt').style('color', '#fff')// 2.支持动态设置属性// a:随机属性 ...

  9. el表达式字符串与变量拼接

    ${empty navigationMenu.pageid? '':'&mpage='.concat(navigationMenu.pageid)}

  10. Centos 6.4 安装erlang&rabbitmq

    1. 安装 erlang 1.1 准备工作,先安装依赖库 yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-d ...