题意

有个人要去圣彼得堡旅游,在圣彼得堡每天要花\(k\)块钱,然后在圣彼得堡有\(n\)个兼职工作\(l_i,r_i,p_i\),如果这个人在\(l_i\)到\(r_i\)这个时间段都在圣彼得堡,那么他就可以赚到\(p_i\)块钱,现在他要规划旅游计划\(\left[ L,R\right]\),表示他会在\(L\)到达,在\(R\)离开,要求给出赚钱最多的方案。

解题思路

线段树区间加法,单点最大值及取得最大值的下标。

将兼职工作挂到右端点上,然后枚举离开的时间,枚举到\(i\)时,就对区间\(\left[1,i\right]\)进行区间减\(k\),然后对于以\(i\)为右端点的询问\((l,r,p)\)对区间\(\left[1,l\right]\)进行区间加\(p\)。这样,对于线段树维护的序列,记为\(A\),\(A_j\)即表示第\(j\)天到达,第\(i\)天离开能获取的最大利润,然后每次更新即可。

解题代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,int> pi;
typedef tuple<ll,int,int> tp;
const int maxn=2e5+5;
int n;
ll k; pi v[maxn<<2];
ll tag[maxn<<2];
void push_down(int x){
if(tag[x]){
tag[x<<1]+=tag[x]; tag[x<<1|1]+=tag[x];
v[x<<1].first+=tag[x]; v[x<<1|1].first+=tag[x];
tag[x]=0;
}
}
void build(int x,int l,int r){
if(l==r){
v[x]=make_pair(0LL,l);
return;
}
int mid=(l+r)>>1;
build(x<<1,l,mid); build(x<<1|1,mid+1,r);
v[x]=max(v[x<<1],v[x<<1|1]);
}
void update(int x,int l,int r,int L,int R,ll val){
if(l==L && r==R){
tag[x]+=val;
v[x].first+=val;
return;
}
push_down(x);
int mid=(l+r)>>1;
if(R<=mid)update(x<<1,l,mid,L,R,val);
else if(L>mid)update(x<<1|1,mid+1,r,L,R,val);
else{
update(x<<1,l,mid,L,mid,val);
update(x<<1|1,mid+1,r,mid+1,R,val);
}
v[x]=max(v[x<<1],v[x<<1|1]);
}
pi query(int x,int l,int r,int L,int R){
if(l==L && r==R)return v[x];
push_down(x);
int mid=(l+r)>>1;
if(R<=mid)return query(x<<1,l,mid,L,R);
else if(L>mid)return query(x<<1|1,mid+1,r,L,R);
return max(query(x<<1,l,mid,L,mid),query(x<<1|1,mid+1,r,mid+1,R));
} vector<tp>q[maxn];
vector<int>ans;
int main()
{
scanf("%d %lld",&n,&k);
int l,r; ll p;
build(1,1,2e5);
for(int i=1;i<=n;i++){
scanf("%d %d %lld",&l,&r,&p);
q[r].push_back(make_tuple(p,l,i));
}
p=0;int L,R;
for(int i=1;i<=2e5;i++){
update(1,1,2e5,1,i,-k);
for(tp P:q[i])update(1,1,2e5,1,get<1>(P),get<0>(P));
if(v[1].first>p){
p=v[1].first; L=v[1].second; R=i;
}
}
if(p<=0)printf("0\n");
else{
for(int i=L;i<=R;i++){
for(tp P:q[i])if(get<1>(P)>=L)ans.push_back(get<2>(P));
}
printf("%lld %d %d %d\n",p,L,R,(int)ans.size());
for(int id:ans)printf("%d ",id);
}
return 0;
}

Codeforces1250C Trip to Saint Petersburg 线段树的更多相关文章

  1. 离散化+线段树 POJ 3277 City Horizon

    POJ 3277 City Horizon Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18466 Accepted: 507 ...

  2. poj City Horizon (线段树+二分离散)

    http://poj.org/problem?id=3277 City Horizon Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  3. POJ3321/Apple tree/(DFS序+线段树)

    题目链接 Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9692 Accepted: 3217 Descr ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树

    [BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...

  6. 【BZOJ】1645: [Usaco2007 Open]City Horizon 城市地平线(线段树+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1645 这题的方法很奇妙啊...一开始我打了一个“离散”后的线段树.............果然爆了. ...

  7. HDU 6162 Ch’s gift (树剖 + 离线线段树)

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  8. ACM/ICPC 2018亚洲区预选赛北京赛站网络赛 D 80 Days (线段树查询最小值)

    题目4 : 80 Days 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 80 Days is an interesting game based on Jules Ve ...

  9. Luogu P3459 [POI2007]MEG-Megalopolis(线段树)

    P3459 [POI2007]MEG-Megalopolis 题意 题目描述 Byteotia has been eventually touched by globalisation, and so ...

随机推荐

  1. HashMap:从源码分析到面试题

    1 HashMap简介 HashMap是实现map接口的一个重要实现类,在我们无论是日常还是面试,以及工作中都是一个经常用到角色.它的结构如下: 它的底层是用我们的哈希表和红黑树组成的.所以我们在学习 ...

  2. Python turtle库的画笔控制说明

    turtle.penup() 别名 turtle.pu() :抬起画笔海龟在飞行 turtle.pendown() 别名 turtle.pd():画笔落下,海龟在爬行 turtle.pensize(w ...

  3. Unity 入门

  4. Nginx MogileFS 配置

    配置好MogileFS, 见mogilefs的安装与配置随笔 下载nginx.1.10.3.tar.gz, nginx_mogilefs_module.1.0.4.tar.gz 编译安装 将连个tar ...

  5. Python学习笔记之 Python设计思想&设计原则

    Python设计思想&设计原则 设计思想 1.封装 数据角度 多种数据合为一种数据 优势:代码可读性高            将数据与行为相关联 例如:电脑(内存,储存空间,...) 行为角度 ...

  6. 2020-06-01:百万级int数据量的一个array求和。

    福哥答案2020-06-01: fork/join. 对于百万级长度的数组求和,单线程和多线程下区别不大.对于千万级长度的数组求和,多线程明显变快,大概是单线程的2-3倍. go语言测试代码如下: p ...

  7. 源代码管理工具 ——Git的介绍与简要教程

    一.Github与Git (一)简介 GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名GitHub. GitHub于2008年4月10日正式上线 ...

  8. github渗透测试工具库[转载]

    前言 今天看到一个博客里有这个置顶的工具清单,但是发现这些都是很早以前就有文章发出来的,我爬下来后一直放在txt里吃土.这里一起放出来. 漏洞练习平台 WebGoat漏洞练习平台:https://gi ...

  9. CSS动画实例:旋转的圆角正方形

    在页面中放置一个类名为container的层作为效果呈现容器,在该层中再定义十个名为shape的层层嵌套的子层,HTML代码描述如下: <div class="container&qu ...

  10. 同事不太懂负载均衡,我直接把阿里架构师的这份Nginx笔记甩给他

    Nginx功能强大,架构复杂,学习.维护和开发的门槛较高. 本份笔记深入最新的Nginx源码,详细剖析了模块体系.动态插件.功能框架.进程模型.事件驱动.线程池.TCP/UDP/HTTP 处理等Ngi ...