POJ3233 构造子矩阵+矩阵快速幂
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n
sol:直接把每一项解出来显然是不行的,也没必要。
我们可以YY一个矩阵:

其中1表示单位矩阵
然后容易得到:

可以看出这个分块矩阵的左下角那块就可以得到要求的解S
我们取这一块,再减去一个单位矩阵1即可。
为了保持右下角一直是1,所以右上的位置必须是0,由于需要不断移位,所以1是必要的,A是必要的,所以第一列保证移位,
第二列保证保留1,因此我们能成功构造出....
这个题还可以根据等比矩阵的性质来进行求解...后面补(x
1 #include <iostream>
2 #include <stdio.h>
3 #include <cstring>
4 using namespace std;
5
6 int n,k,mod;
7 typedef long long ll;
8 struct matrix{
9 int row,col,ele[32][32];
10 matrix(){};
11 matrix(int row,int col):row(row),col(col){
12 memset(ele,0,sizeof(ele));
13 }
14 void init(){
15 row=col=n;memset(ele,0,sizeof(ele));
16 for(int i=0;i<n;++i) ele[i][i]=1;
17 }
18 void clear(){
19 row=col=n;
20 memset(ele,0,sizeof(ele));
21 }
22 matrix operator *(const matrix& rhs){
23 if(col!=rhs.row) printf("Exception...\n");
24 matrix c=matrix(row,rhs.col);
25 for(int i=0;i<row;i++)
26 for(int k=0;k<col;++k)
27 for(int j=0;j<rhs.col;++j)
28 c.ele[i][j]=(c.ele[i][j]+ele[i][k]*rhs.ele[k][j])%mod;
29 return c;
30 }
31 matrix operator +(const matrix &rhs){
32 if(row!=rhs.row||col!=rhs.col) printf("+ Exception\n");
33 matrix c=matrix(row,col);
34 for(int i=0;i<row;++i)
35 for(int j=0;j<col;++j)
36 c.ele[i][j]=(c.ele[i][j]+ele[i][j]+rhs.ele[i][j])%mod;
37 return c;
38 }
39 void print(){
40 for(int i=0;i<row;++i){
41 for(int j=0;j<col;++j)
42 printf("%d ",ele[i][j]);
43 printf("\n");
44 }
45 }
46 };
47 struct bigMatrix{
48 int row,col;matrix ele[5][5];
49 bigMatrix(){};
50 bigMatrix(int row,int col):row(row),col(col){
51 for(int i=0;i<row;++i)
52 for(int j=0;j<col;++j) ele[i][j].clear();
53 }
54 void init(){
55 row=col=2;
56 for(int i=0;i<row;++i)
57 for(int j=0;j<col;++j) ele[i][j].clear();
58 for(int i=0;i<row;++i) ele[i][i].init();
59 }
60 bigMatrix operator *(const bigMatrix& rhs){
61 if(col!=rhs.row) printf("Exception...\n");
62 bigMatrix c=bigMatrix(row,rhs.col);
63 for(int i=0;i<row;i++)
64 for(int k=0;k<col;++k)
65 for(int j=0;j<rhs.col;++j)
66 c.ele[i][j]=(c.ele[i][j]+ele[i][k]*rhs.ele[k][j]);
67 return c;
68 }
69 };
70 bigMatrix fastpow(bigMatrix a,ll b){
71 bigMatrix ans;ans.init();
72 // printf("%d %d %d %d\n",a.row,a.col,ans.row,ans.col);
73 if(b==0) return ans;
74 while(b){
75 if(b&1) ans=ans*a;
76 a=a*a;
77 b>>=1;
78 }
79 return ans;
80 }
81 int main(){
82 while(~scanf("%d%d%d",&n,&k,&mod)){
83 matrix A=matrix(n,n);
84 for(int i=0;i<n;++i){
85 for(int j=0;j<n;++j){
86 scanf("%d",&A.ele[i][j]);
87 A.ele[i][j]%=mod;
88 }
89 }
90 bigMatrix mat=bigMatrix(2,2);
91 matrix t=matrix(n,n);t.init();
92 mat.ele[0][0]=A;mat.ele[0][1]=matrix(n,n);
93 mat.ele[1][0]=t;mat.ele[1][1]=t;
94 bigMatrix d=fastpow(mat,k+1);
95 matrix B=d.ele[1][0];
96 for(int i=0;i<n;++i) B.ele[i][i]=(B.ele[i][i]-1+mod)%mod;
97 for(int i=0;i<n;++i){
98 printf("%d",B.ele[i][0]);
99 for(int j=1;j<n;++j){
100 printf(" %d",B.ele[i][j]);
101 }
102 printf("\n");
103 }
104 }
105 return 0;
106 }
POJ3233 构造子矩阵+矩阵快速幂的更多相关文章
- 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)
[解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...
- poj3070 单位矩阵(转移矩阵构造)+矩阵快速幂
太妙了..通过矩阵乘法来加速递推 #include<iostream> #include<cstring> #include<cstdio> using names ...
- hdu 2256 Problem of Precision 构造整数 + 矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:给定 n 求解 ? 思路: , 令 , 那么 , 得: 得转移矩阵: 但是上面求出来的并 ...
- hdu4686 Arc of Dream ——构造矩阵+快速幂
link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = ...
- poj3233 Matrix Power Series(矩阵快速幂)
题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵 将 S 取幂,会发现一个特性: Sk +1右上角 ...
- poj3233(矩阵快速幂的和)
题目链接:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K T ...
- HDU1757-A Simple Math Problem,矩阵快速幂,构造矩阵水过
A Simple Math Problem 一个矩阵快速幂水题,关键在于如何构造矩阵.做过一些很裸的矩阵快速幂,比如斐波那契的变形,这个题就类似那种构造.比赛的时候手残把矩阵相乘的一个j写成了i,调试 ...
- BZOJ 3240 构造矩阵+矩阵快速幂
思路: ax+b cx+d 构造矩阵+矩阵快速幂 (需要加各种特判,,,,我好像加少了- ) //By SiriusRen #include <cstdio> #include <c ...
- 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )
题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...
随机推荐
- Py-上下文管理方法,描述符的应用,错误与异常
上下文管理方法: 可以在exit里面弄一些内存清理的功能 class Open: def __init__(self,name): self.name=name def __enter__(self) ...
- CMU数据库(15-445)实验2-B+树索引实现(下+课上笔记)
4. Index_Iterator实现 这里就是需要实现迭代器的一些操作,比如begin.end.isend等等 下面是对于IndexIterator的构造函数 template <typena ...
- .net core 和 WPF 开发升讯威在线客服与营销系统:使用 TCP协议 实现稳定的客服端
本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...
- Service Locator Pattern 服务定位
https://www.geeksforgeeks.org/service-locator-pattern/ Service Locator Pattern Last Updated: 06-03-2 ...
- C++ Primer Plus读书笔记(九)内存模型和名称空间
1.作用域和链接 int num3; static int num4; int main() { } void func1() { static int num1; int num2; } 上边的代码 ...
- LOJ10082
题目描述 原题来自:Centrual Europe 2005 我们有N个字符串,每个字符串都是由 a 至 z 的小写英文字母组成的.如果字符串A的结尾两个字符刚好与字符串B的开头两个字符匹配,那么我们 ...
- 004_C++常见错误类型总结(一)之最后几行错误
1.介绍 经常进行代码测试和静态代码分析的同学,应该会遇到这样的一个问题,就是一个程序段的最后几行,或者一个源文件末尾会出现错误.本文,结合专业的静态代码分析软件PSV-Studio提供错误类型代码库 ...
- SpringMVC听课笔记(二:SpringMVC的 HelloWorld)
1.如何建Maven web项目,请看http://how2j.cn/k/maven/maven-eclipse-web-project/1334.html 2.Maven项目,pom文件中的jar包 ...
- SpringCloud-常用组件介绍
SpringCloud-常用组件介绍 分布式系统开发用于分布式环境(多个服务器不在同一个机房,同一个业务服务在多台服务器运行) Spring Cloud 是基于Springboot的分布式云服务架构, ...
- Tomcat 核心组件 Container容器相关
前言 Engine容器 Host容器 前言 Connector把封装了Request对象以及Response对象的Socket传递给了Container容器,那么在Contianer容器中又是怎么样的 ...