题目:戳这里

思路来源:视频讲解

题意:有n个箱子按1...n标号,每个箱子有大小为di的钻石概率为pi,我们初始有个大小为0的钻石,从1到n按顺序打开箱子,遇到比手中大的箱子就换,求交换次数的数学期望。

解题思路:这题跟上题[点这里]很像,都是找到一个子状态,利用数学期望的可加性,处理求和即可。这里的子状态为每一次交换的状态,即

前j个比i大的概率积用树状数组维护。

附ac代码:

  1 #include <cstdio>
2 #include <cstdlib>
3 #include <iostream>
4 #include <cstring>
5 #include <algorithm>
6 #include <cmath>
7 #include <queue>
8 #include <vector>
9 #include <string>
10 #include <map>
11 #include <set>
12 using namespace std;
13 typedef long long ll;
14 const ll mod = 998244353;
15 const int maxn = 1e5 + 10;
16 int n;
17 struct nod
18 {
19 int id;
20 ll d;
21 ll p;
22 }bx[maxn];
23 bool cmp(nod a, nod b)
24 {
25 if(a.d > b.d) return 1;
26 else if(a.d == b.d && a.id < b.id) return 1;
27 return 0;
28 }
29 ll pmul(ll a, ll b)
30 {
31 ll res = 0;
32 while(b)
33 {
34 if(b&1)
35 res = (res + a) % mod;
36 b >>= 1;
37 a = (a + a) % mod;
38 }
39 return res;
40 }
41 ll pmod(ll a, ll b)
42 {
43 ll res = 1;
44 while(b)
45 {
46 if(b&1)
47 res = pmul(res, a) % mod;
48 b >>= 1;
49 a = pmul(a, a) % mod;
50 }
51 return res;
52 }
53 ll exgcd(ll a, ll b, ll &x, ll &y)
54 {
55 if(a == 0 && b == 0) return -1;
56 if(b == 0)
57 {
58 x = 1;y = 0;
59 return a;
60 }
61 ll d = exgcd(b, a % b, y, x);
62 y -= a/b*x;
63 return d;
64 }
65 ll mod_rev(ll a, ll n)
66 {
67 ll x, y;
68 ll d = exgcd(a, n, x, y);
69 if(d == 1) return (x % n + n) % n;
70 else return -1;
71 }
72 int lowbit(int x)
73 {
74 return x&(-x);
75 }
76 ll c[maxn * 4];
77 ll getm(int i)
78 {
79 ll s = 1;
80 while(i > 0)
81 {
82 s = pmul(s , c[i]) % mod;
83 i -= lowbit(i);
84 }
85 return s;
86 }
87 void add(int i, ll val)
88 {
89 while(i <= n)
90 {
91 c[i] = pmul(c[i], val) %mod;
92 i += lowbit(i);
93 }
94 }
95 int main()
96 {
97
98 ll inv = mod_rev(100ll, mod);
99 // printf("%lld\n", inv);
100 scanf("%d", &n);
101 for(int i = 0; i < maxn; ++i)
102 c[i] = 1;
103 for(int i = 1; i <= n; ++i)
104 {
105 scanf("%lld %lld", &bx[i].p, &bx[i].d);
106 bx[i].id = i;
107 }
108 sort(bx + 1, bx + 1 + n, cmp);
109
110 ll ans = 0;
111 for(int i = 1; i <= n; ++i)
112 {
113 // printf("%lld\n", getm(bx[i].id));
114 //printf("%lld %lld %d\n", bx[i].p, bx[i].d, bx[i].id);
115 ans = (ans + getm(bx[i].id) * bx[i].p % mod * inv % mod) % mod;
116 add(bx[i].id, ((100 - bx[i].p) * inv) % mod);
117 }
118 printf("%lld\n", ans);
119 }

牛客网多校第5场 F take 【思维+数学期望】的更多相关文章

  1. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  2. 牛客网多校第3场C-shuffle card 平衡树或stl(rope)

    链接:https://www.nowcoder.com/acm/contest/141/C 来源:牛客网 题目描述 Eddy likes to play cards game since there ...

  3. 牛客网多校第3场Esort string (kmp)

    链接:https://www.nowcoder.com/acm/contest/141/E 来源:牛客网 题目描述 Eddy likes to play with string which is a ...

  4. 牛客网多校赛第九场A-circulant matrix【数论】

    链接:https://www.nowcoder.com/acm/contest/147/A 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  5. 牛客网多校训练第二场D Kth Minimum Clique

    链接:https://ac.nowcoder.com/acm/contest/882/D来源:牛客网 Given a vertex-weighted graph with N vertices, fi ...

  6. 牛客网多校第5场 H subseq 【树状数组+离散化】

    题目:戳这里 学习博客:戳这里 题意:给n个数为a1~an,找到字典序第k小的序列,输出该序列所有数所在位置. 解题思路:先把所有序列预处理出来,方法是设一个数组为dp,dp[i]表示以i为开头的序列 ...

  7. 牛客网多校第5场 I vcd 【树状数组+离散化处理】【非原创】

    题目:戳这里 学习博客:戳这里 作者:阿狸是狐狸啦 n个点,一个点集S是好的,当且仅当对于他的每个子集T,存在一个右边无限延长的矩形,使的这个矩形包含了T,但是和S-T没有交集. 求有多少个这种集合. ...

  8. 牛客网多校第4场 J Hash Function 【思维+并查集建边】

    题目链接:戳这里 学习博客:戳这里 题意: 有n个空位,给一个数x,如果x%n位数空的,就把x放上去,如果不是空的,就看(x+1)%n是不是空的. 现在给一个已经放过数的状态,求放数字的顺序.(要求字 ...

  9. 牛客网多校第4场 A.Ternary String 【欧拉降幂】

    题目:戳这里 学习博客:戳这里 欧拉函数的性质: ① N是不为0的整数.φ(1)=1(唯一和1互质的数就是1本身) ② 除了N=2,φ(N)都是偶数. ③ 小于N且与N互质的所有数的和是φ(n)*n/ ...

随机推荐

  1. postgresql数据库升级

    pg_upgrade官网介绍:https://www.postgresql.org/docs/10/pgupgrade.html 1.查看老版本数据库编译参数值并记录 select name,sett ...

  2. hive窗口函数/分析函数详细剖析

    hive窗口函数/分析函数 在sql中有一类函数叫做聚合函数,例如sum().avg().max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时 ...

  3. Django中多表关联的展示问题:

    增加一个知识点,当表中有多对多关联时,在前端展示的时候是一个列表,所以在展示的时候需要这样做: 表结构: class ProjectEnv(models.Model): project = model ...

  4. 解决windows与虚拟机ubuntu互相ping不通的问题

    工作中经常用Ubuntu开发,而Ubuntu是安装在虚拟机中的,在弄网络开发的时候经常会用windows下的网络调试工具与Ubuntu中写好的网络程序进行通信,首先要保证windows与Ubuntu能 ...

  5. 免费稳定图床最佳实践:PicGo+GitHub+jsDeliver 极简教程

    一.下载 PicGo PicGo 是啥?顾名思义,它是一个快速上传图片并获取 图片 URL 链接的工具. 目前支持七牛.腾讯云.阿里云和 GitHub 等图床.该工具代码已在 GitHub 开源,读者 ...

  6. goroutine 分析 协程的调度和执行顺序 并发写 run in the same address space 内存地址 闭包 存在两种并发 确定性 非确定性的 Go 的协程和通道理所当然的支持确定性的并发方式(

    package main import ( "fmt" "runtime" "sync" ) const N = 26 func main( ...

  7. 一致性哈希算法C#实现

    一致性hash实现,以下实现没有考虑多线程情况,也就是没有加锁,需要的可以自行加上.因为换行的问题,阅读不太方便,可以拷贝到本地再读. 1 /// <summary> 2 /// 一致性哈 ...

  8. physical CPU vs logical CPU vs Core vs Thread vs Socket(翻译)

    原文地址: http://www.daniloaz.com/en/differences-between-physical-cpu-vs-logical-cpu-vs-core-vs-thread-v ...

  9. LOJ10098

    USACO 2006 Jan. Gold 为了从F个草场中的一个走到另一个,贝茜和她的同伴们不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会 ...

  10. Kafka Fetch Session剖析

    1.概述 最近有同学留言在使用Kafka的过程中遇到一些问题,比如在拉取的Topic中的数据时会抛出一些异常,今天笔者就为大家来分享一下Kafka的Fetch流程. 2.内容 2.1 背景 首先,我们 ...