poj 2762(强连通分量+拓扑排序)
题目链接:http://poj.org/problem?id=2762
题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No.
分析:对于同一个强连通分量而言,所有的点都是互达的,如果该有向图只有一个强连通分量,则肯定是Yes了;
若有多个强连通分量呢?判断两个不同的强连通分量的点u和v是否单连通,缩点后,建新图,用拓扑排序判断,删除点的时候若发现有大于2个点的入度为0,则u和v必定不能连通。
AC代码:
#include<cstdio>
#include<cstring>
const int N=+;
const int M=+;
struct EDGE{
int v,next;
}edge[M],edge2[M];
int first[N],low[N],dfn[N],sta[M],belong[N],que[M],in[N],first2[N];
bool instack[N],map[N][N];
int cnt,g,scc,top,k;
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void AddEdge2(int u,int v)
{
edge2[k].v=v;
edge2[k].next=first2[u];
first2[u]=k++;
}
int min(int a,int b)
{
return a<b?a:b;
}
void Tarjan(int u) //求强连通分量
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=true;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=false;
belong[v]=scc; //缩点
if(v==u)
break;
}
}
}
void build(int n) //建缩点后的新图
{
int u,i,v,a,b;
memset(map,false,sizeof(map));
memset(first2,-,sizeof(first2));
memset(in,,sizeof(in));
k=;
for(u=;u<=n;u++) //遍历每个顶点的出边
{
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
a=belong[u];
b=belong[v];
if(a==b) //若属于同一个强连通分量
continue;
if(!map[a][b])
{
AddEdge2(a,b); //建新边
map[a][b]=true;
in[b]++;
}
}
}
}
int topo() //拓扑排序
{
int i,front,rear,top,v;
front=rear=;
for(i=;i<=scc;i++)
if(in[i]==)
{
que[rear++]=i;
}
if(rear-front>) //入度为0的顶点个数大于1,则无解
return ;
while(front<rear)
{
top=que[front++];
for(i=first2[top];i!=-;i=edge2[i].next)
{
v=edge2[i].v;
in[v]--;
if(in[v]==)
{
que[rear++]=v;
}
if(rear-front>)
return ;
}
}
return ; //有解
}
int main()
{
int t,n,m,i,u,v;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(instack,false,sizeof(instack));
while(m--)
{
scanf("%d%d",&u,&v);
AddEdge(u,v);
}
for(i=;i<=n;i++) //求强连通分量
if(!dfn[i])
Tarjan(i);
build(n); //建缩点后的新图
if(topo()) //拓扑排序
printf("Yes\n");
else
printf("No\n");
}
return ;
}
poj 2762(强连通分量+拓扑排序)的更多相关文章
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset
BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i ...
- POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)
职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...
- BZOJ1924:[SDOI2010]所驼门王的宝藏(强连通分量,拓扑排序)
Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...
- 2019ICPC(银川) - Delivery Route(强连通分量 + 拓扑排序 + dijkstra)
Delivery Route 题目:有n个派送点,x条双向边,y条单向边,出发点是s,双向边的权值均为正,单向边的权值可以为负数,对于单向边给出了一个限制:如果u->v成立,则v->u一定 ...
- CDOJ 图论专题 A.不是图论 强连通分量+拓扑排序 经典
题目链接 在其中纠错第一次wa代码 #include <cstdio> #include <cstring> #include <cstdlib> #includ ...
- poj 2186 强连通分量
poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...
- poj 2762 强连通缩点+拓扑排序
这题搞了好久,先是拓扑排序这里没想到,一开始自己傻乎乎的跑去找每层出度为1的点,然后才想到能用拓扑排序来弄. 拓扑排序的时候也弄了挺久的,拓扑排序用的也不多. 题意:给一个图求是否从对于任意两个点能从 ...
- poj 1236(强连通分量分解模板题)
传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...
随机推荐
- Database hang and Row Cache Lock concurrency troubleshooting
http://www.dadbm.com/database-hang-row-cache-lock-concurrency-troubleshooting/ Issue backgroundThis ...
- 区分Web Server和应用服务器
一般的信息服务系统架构如下图所示: Web Server:提供Web信息浏览服务,主要处理的静态资源(session,request,js,html,cs等),如响应http请求,响应请求返回静态ht ...
- AI 主成分分析(PCA)
主成分分析(principal components analysis,简称PCA),
- ThreadGroup其实比ExecutorService更好
用java做抓取的时候免不了要用到多线程的了,因为要同时抓取多个网站或一条线程抓取一个网站的话实在太慢,而且有时一条线程抓取同一个网站的话也比较浪费CPU资源.要用到多线程的等方面,也就免不了对线程的 ...
- 二、java三大特性--继承
在讲解之前我们先看一个例子 Husband.java public class Husband { private String name; private String sex; privatein ...
- sprintf()函数用法
sprintf()用法见操作手册:http://www.php.net/sprintf 简单写下format的用法: 1. + - 符号,数字 2. 填充字符 默认是空格,可以是0.如果其他字符填充, ...
- 现有各种SSTC电路图,欢迎补充,研究,开发
现有各种SSTC电路图,欢迎补充,研究,开发 496464505 2016-3-1 16:01:55 现在的各种SSTC基本都是这些图 2016-3-3 19:28:23 comter2001 ...
- Luogu4770 NOI2018 你的名字 SAM、主席树
传送门 UPD:发现之前被smy误导的一个细节,改过来之后就AC了-- 一道比较套路的SAM题,虽然我连套路都不会-- 先考虑前\(68pts\),也就是\(l=1 , r=|S|\)的情况.我们对\ ...
- 实现Repeater控件的记录单选
有朋友问及,在Repeater控件中第一列放置一个RadioButton,实现对记录的单选. 下面Insus.NET想举个例子来实现与说明. 为Repeater控件准备数据: 在ASPX网页上,写好R ...
- LiveCharts文档-3开始-8自定义工具提示
原文:LiveCharts文档-3开始-8自定义工具提示 LiveCharts文档-3开始-8自定义工具提示 默认每个需要tooltip或者legend的chart都会初始化一个DefaultLeng ...