poj 2762(强连通分量+拓扑排序)
题目链接:http://poj.org/problem?id=2762
题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No.
分析:对于同一个强连通分量而言,所有的点都是互达的,如果该有向图只有一个强连通分量,则肯定是Yes了;
若有多个强连通分量呢?判断两个不同的强连通分量的点u和v是否单连通,缩点后,建新图,用拓扑排序判断,删除点的时候若发现有大于2个点的入度为0,则u和v必定不能连通。
AC代码:
#include<cstdio>
#include<cstring>
const int N=+;
const int M=+;
struct EDGE{
int v,next;
}edge[M],edge2[M];
int first[N],low[N],dfn[N],sta[M],belong[N],que[M],in[N],first2[N];
bool instack[N],map[N][N];
int cnt,g,scc,top,k;
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void AddEdge2(int u,int v)
{
edge2[k].v=v;
edge2[k].next=first2[u];
first2[u]=k++;
}
int min(int a,int b)
{
return a<b?a:b;
}
void Tarjan(int u) //求强连通分量
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=true;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=false;
belong[v]=scc; //缩点
if(v==u)
break;
}
}
}
void build(int n) //建缩点后的新图
{
int u,i,v,a,b;
memset(map,false,sizeof(map));
memset(first2,-,sizeof(first2));
memset(in,,sizeof(in));
k=;
for(u=;u<=n;u++) //遍历每个顶点的出边
{
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
a=belong[u];
b=belong[v];
if(a==b) //若属于同一个强连通分量
continue;
if(!map[a][b])
{
AddEdge2(a,b); //建新边
map[a][b]=true;
in[b]++;
}
}
}
}
int topo() //拓扑排序
{
int i,front,rear,top,v;
front=rear=;
for(i=;i<=scc;i++)
if(in[i]==)
{
que[rear++]=i;
}
if(rear-front>) //入度为0的顶点个数大于1,则无解
return ;
while(front<rear)
{
top=que[front++];
for(i=first2[top];i!=-;i=edge2[i].next)
{
v=edge2[i].v;
in[v]--;
if(in[v]==)
{
que[rear++]=v;
}
if(rear-front>)
return ;
}
}
return ; //有解
}
int main()
{
int t,n,m,i,u,v;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(instack,false,sizeof(instack));
while(m--)
{
scanf("%d%d",&u,&v);
AddEdge(u,v);
}
for(i=;i<=n;i++) //求强连通分量
if(!dfn[i])
Tarjan(i);
build(n); //建缩点后的新图
if(topo()) //拓扑排序
printf("Yes\n");
else
printf("No\n");
}
return ;
}
poj 2762(强连通分量+拓扑排序)的更多相关文章
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset
BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i ...
- POJ 2762 Going from u to v or from v to u?(强连通分量+拓扑排序)
职务地址:id=2762">POJ 2762 先缩小点.进而推断网络拓扑结构是否每个号码1(排序我是想不出来这点的. .. ).由于假如有一层为2的话,那么从此之后这两个岔路的点就不可 ...
- BZOJ1924:[SDOI2010]所驼门王的宝藏(强连通分量,拓扑排序)
Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...
- 2019ICPC(银川) - Delivery Route(强连通分量 + 拓扑排序 + dijkstra)
Delivery Route 题目:有n个派送点,x条双向边,y条单向边,出发点是s,双向边的权值均为正,单向边的权值可以为负数,对于单向边给出了一个限制:如果u->v成立,则v->u一定 ...
- CDOJ 图论专题 A.不是图论 强连通分量+拓扑排序 经典
题目链接 在其中纠错第一次wa代码 #include <cstdio> #include <cstring> #include <cstdlib> #includ ...
- poj 2186 强连通分量
poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...
- poj 2762 强连通缩点+拓扑排序
这题搞了好久,先是拓扑排序这里没想到,一开始自己傻乎乎的跑去找每层出度为1的点,然后才想到能用拓扑排序来弄. 拓扑排序的时候也弄了挺久的,拓扑排序用的也不多. 题意:给一个图求是否从对于任意两个点能从 ...
- poj 1236(强连通分量分解模板题)
传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...
随机推荐
- 20145236《网络攻防》 Exp3 免杀原理与实践
20145236<网络攻防> Exp3 免杀原理与实践 一.基础问题回答 1.杀软是如何检测出恶意代码的? 恶意代码有其特有的特征码,杀软将特征码加入检测库中,当检测到一段代码中具有这样的 ...
- <数据结构与算法分析>读书笔记--最大子序列和问题的求解
现在我们将要叙述四个算法来求解早先提出的最大子序列和问题. 第一个算法,它只是穷举式地尝试所有的可能.for循环中的循环变量反映了Java中数组从0开始而不是从1开始这样一个事实.还有,本算法并不计算 ...
- Python基础(8)——常见模块
模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configparser has ...
- Sql Server插入数据并返回自增ID,@@IDENTITY,SCOPE_IDENTITY和IDENT_CURRENT的区别(转载)
预备知识:SQL Server的IDENTITY关键字IDENTITY关键字代表的是一个函数,而不是identity属性.在access里边没有这个函数,所以在access不能用这个语句.语法:ide ...
- [Oracle]快速构造大量数据的方法
[Oracle]快速构造大量数据的方法: create table tab001(id integer primary key, val varchar2(100)); insert into tab ...
- Stencil 基础
Stencil 一个轻量化,渐进式编译器,注意,不是框架. 使用 TypeScript 进行所有操作,这是一个门槛,有一定技术门槛要求. PS:个人强烈推荐所有的前端同学都学习,或至少了解这个超集语言 ...
- Web应用实例:音频可视化
准备 语言:TypeScript 工具:Visual Studio Code 演示:Audio Visualiazer 小明告诉我,他希望打开一个网页,立即听到他喜欢的音乐,如果有视觉特效就更棒了. ...
- Libp2p学习(一)
Libp2p学习 参考资料:libp2p-specifications : https://github.com/libp2p/specs 持续更新ing 1. 介绍 Libp2p的实现目标是: 支持 ...
- nginx下目录浏览及其验证功能、版本隐藏等配置记录
工作中常常有写不能有网页下载东西的需求,在Apache下搭建完成后直接导入文件即可达到下载/显示文件的效果;而Nginx的目录列表功能默认是关闭的,如果需要打开Nginx的目录列表功能,需要手动配置, ...
- 分布式监控系统Zabbix-3.0.3-完整安装记录(1)
分布式监控系统Zabbix-3.0.3的安装记录 环境说明zabbix-server:192.168.1.30 #zabbix的服务端(若要监控本机,则需要配置本机的Zabbix agent, ...