【洛谷p1066】2^k进制数
(不会敲键盘惹qwq)
算法标签:
(又是一个提高+省选-的题)
如果我说我没听懂你信吗
代码qwq:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[][][],tot[],mmax;
int pow(int a,int b)
{
int ans=,with=a;
while(b)
{
if(b&) ans*=with;
with*=with;
b>>=;
}
return ans;
}
void jiafa(int j[],int a[])
{
int lb=;
while(lb<=j[]||lb<=a[])
{
j[lb]+=a[lb];
if(j[lb]>=)
{
j[lb]%=;
j[lb+]++;
}
lb++;
}
while(j[lb]>=)
{
j[lb]%=;
lb++;
j[lb]++;
}
while(!j[lb]&&lb>) lb--;
if(lb>j[]) j[]=lb;
}
void jiafa1(int a[],int b)
{
int lb=;
while(b)
{
a[++lb]=b%;
b/=;
}
a[]=lb;
jiafa(tot,a);
}
int main()
{
int k,w;
cin>>k>>w;
int g=w/k;
bool youyu=;
int mmax2;
if(w%k)
{
g++;
youyu=;
mmax2=pow(,w%k)-;
}
mmax=pow(,k)-;
for(int i=;i<mmax;i++) jiafa1(a[][i],mmax-i);
int l=,n=;
for(int i=;i<=g;i++)
{
if(i==g&&youyu&&mmax2<mmax)
{
for(int i=mmax-;i>mmax2;i--)
jiafa(a[n][mmax2],a[l][i]);
jiafa(tot,a[n][mmax2]);
for(int j=mmax2-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
break;
}
jiafa(a[n][mmax-],a[l][mmax]);
jiafa(tot,a[n][mmax-]);
for(int j=mmax-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
for(int j=;j<=mmax;j++)
memset(a[l][j],,sizeof(a[l][j]));
n++;l++;
if(n==) n=;
if(l==) l=;
}
int lt=tot[];
while(!tot[lt]&<>) lt--;
for(;lt>;lt--) cout<<tot[lt];
return ;
}//装作是自己写的样子
end-
【洛谷p1066】2^k进制数的更多相关文章
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- 洛谷1066 2^k进制数
原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- [Luogu P1066] 2^k进制数 (组合数或DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...
- 洛谷P1582——倒水(进制,数学)
https://www.luogu.org/problem/show?pid=1582 题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着~~CC发现瓶子实在太多了 ...
- Luogu P1066 2^k进制数 组合数学
分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...
随机推荐
- poj3278
#include<iostream> #define MAX 100001 int john,cow; int queue[MAX]; int vis[MAX]; int ans; voi ...
- Windows 10 家庭版/专业版 彻底关闭windows update自动更新
转载: https://blog.csdn.net/u014162133/article/details/84973426# https://blog.csdn.net/qq_40820862/art ...
- 深度学习基础(二)AlexNet_ImageNet Classification with Deep Convolutional Neural Networks
该论文是深度学习领域的经典之作,因为自从Alex Krizhevsky提出AlexNet并使用GPUs大幅提升训练的效率之后,深度学习在图像识别等领域掀起了研究使用的热潮.在论文中,作者训练了一个含有 ...
- JQuery插件之【jqGrid】常用语法整理
jqGrid常用语法整理,包含数据获取.常用函数.触发事件等 jqGrid表格数据获取相关语法 获取表格所有数据 $("#grid").jqGrid("getRowDat ...
- openshift 容器云从入门到崩溃之九《容器监控-报警》
容器状态监控 主要是监控POD的状态包括重启.不健康等等这些k8s api 状态本身会报出来,在配合zabbix报警 导入zabbix模板关联上oc master主机 <?xml version ...
- [warn] _default_ VirtualHost overlap on port 443, the first has precedence
配置文件中添加 NameVirtualHost *:433 保存重启apache
- linux affinity
现在的CPU几乎都是多核,所以,分配给予进程相同数量的线程是合理的需求 但是,这些线程不一定就均匀跑在这些内核上 所以,我们要指派,“一个线程就运行在一个固定的CPU内核上” //test.c #de ...
- cocos2dx JS 图片精灵添加纹理缓存
添加精灵图片缓存 : cc.spriteFrameCache.addSpriteFrames("res/pic.plist"); 从缓存中获取 : var frame = cc.s ...
- DevOps“五宗罪”,这样向DevOps过渡注定会失败
云计算提供的速度响应.敏捷性和规模效应,契合了如今不断变化的数字商业环境.企业基于最新的IT技术,重构IT架构,加速产品创新和服务交付的速度,从而提高运营效率和市场占有. 不过,企业IT管理者在利用云 ...
- CSS注意点
案例: 实际开发中,这样写: