(不会敲键盘惹qwq)

2^k进制数【传送门】

算法标签:

(又是一个提高+省选-的题)


如果我说我没听懂你信吗

代码qwq:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[][][],tot[],mmax;
int pow(int a,int b)
{
int ans=,with=a;
while(b)
{
if(b&) ans*=with;
with*=with;
b>>=;
}
return ans;
}
void jiafa(int j[],int a[])
{
int lb=;
while(lb<=j[]||lb<=a[])
{
j[lb]+=a[lb];
if(j[lb]>=)
{
j[lb]%=;
j[lb+]++;
}
lb++;
}
while(j[lb]>=)
{
j[lb]%=;
lb++;
j[lb]++;
}
while(!j[lb]&&lb>) lb--;
if(lb>j[]) j[]=lb;
}
void jiafa1(int a[],int b)
{
int lb=;
while(b)
{
a[++lb]=b%;
b/=;
}
a[]=lb;
jiafa(tot,a);
}
int main()
{
int k,w;
cin>>k>>w;
int g=w/k;
bool youyu=;
int mmax2;
if(w%k)
{
g++;
youyu=;
mmax2=pow(,w%k)-;
}
mmax=pow(,k)-;
for(int i=;i<mmax;i++) jiafa1(a[][i],mmax-i);
int l=,n=;
for(int i=;i<=g;i++)
{
if(i==g&&youyu&&mmax2<mmax)
{
for(int i=mmax-;i>mmax2;i--)
jiafa(a[n][mmax2],a[l][i]);
jiafa(tot,a[n][mmax2]);
for(int j=mmax2-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
break;
}
jiafa(a[n][mmax-],a[l][mmax]);
jiafa(tot,a[n][mmax-]);
for(int j=mmax-;j>=;j--)
{
memcpy(a[n][j],a[n][j+],sizeof(a[n][j+]));
jiafa(a[n][j],a[l][j+]);
jiafa(tot,a[n][j]);
}
for(int j=;j<=mmax;j++)
memset(a[l][j],,sizeof(a[l][j]));
n++;l++;
if(n==) n=;
if(l==) l=;
}
int lt=tot[];
while(!tot[lt]&&lt>) lt--;
for(;lt>;lt--) cout<<tot[lt];
return ;
}//装作是自己写的样子

end-

【洛谷p1066】2^k进制数的更多相关文章

  1. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  2. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  3. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  4. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  5. 洛谷1066 2^k进制数

    原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...

  6. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  7. P1066 2^k进制数

    传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...

  8. [Luogu P1066] 2^k进制数 (组合数或DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...

  9. 洛谷P1582——倒水(进制,数学)

    https://www.luogu.org/problem/show?pid=1582 题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着~~CC发现瓶子实在太多了 ...

  10. Luogu P1066 2^k进制数 组合数学

    分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...

随机推荐

  1. [efficiency] emacs入门

    一. 没记错的话,这可能是第三次读emacs tutorial了.前两次读的非常慢,也不记得有没有读完了.总之最后都忘光了. 这次读的很顺畅,利用工作的空闲时间加上今天晚上(周日).总算是读完了. 没 ...

  2. C++ 11 多线程下std::unique_lock与std::lock_guard的区别和用法

    这里主要介绍std::unique_lock与std::lock_guard的区别用法 先说简单的 一.std::lock_guard的用法 std::lock_guard其实就是简单的RAII封装, ...

  3. TCP/IP协议 模型

    OSI的来源 OSI(Open System Interconnect),即开放式系统互联. 一般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的网络互连模型.  ISO为了更好的 ...

  4. 在ABP中使用linq

    private IQueryable<MembershipEntity> SelectOrScrrenMember(GetMemberInput input) { string[] use ...

  5. PHP多维数组转一维

    目录 1. array_column函数 2. array_walk函数 3. array_map函数 4. foreach循环 5. array_map变种 参考:https://www.awaim ...

  6. oracle 新建用户后赋予的权限语句

    grant create session,resource to itsys; grant create table to itsys;grant resource to itsys;grant cr ...

  7. python数据结构-如何在列表、字典、集合中根据条件筛选数据

    如何在列表.字典.集合中根据条件筛选数据 问题举例: 过滤列表[1, 2, 5, -1, 9, 10]中的负数 筛选字典{“zhangsan”:97, "lisi":80, &qu ...

  8. 家庭记账本之微信小程序(二)

    在网上查阅了资料后,了解到了在完成微信小程序之前要完成注册阶段的工作,此次在这介绍注册阶段的流程. 1.首先你要确定小程序的定位.目的以及文案资料等(准备工作). 2.打开微信公众平台官网,点击右上角 ...

  9. Eclipse出现:An internal error occurred during: "Retrieving archetypes:". GC overhead limit exceeded的问题解决

    网上说修改虚拟内存的方式,其实不太可行,最直接的方式就是删除以前的workspace,重新使用一个新的workspace.

  10. mysql优化方案之sql优化

    优化目标 1.减少 IO 次数 IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先 ...