Problem Description
  A new candy factory opens in pku-town. The factory import M machines to produce high quality candies. These machines are numbered from 1 to M.
  There are N candies need to be produced. These candies are also numbered from 1 to N. For each candy i , it can be produced in any machine j. It also has a producing time(si,ti) , meaning that candy i must start producing at time si and will finish at ti. Otherwise if the start time is pi(si < pi < ti) then candy will still finish at ti but need additional K*(pi - si) cost. The candy can’t be produced if pi is greater than or equal to ti. Of course one machine can only produce at most one candy at a time and can’t stop once start producing.
  On the other hand, at time 0 all the machines are in their initial state and need to be “set up” or changed before starting producing. To set up Machine j from its initial state to the state which is suitable for producing candiy i, the time required is Cij and cost is Dij. To change a machine from the state suitable for candy i1 into the state suitable for candy i2, time required is Ei1i2 and cost is Fi1i2.
  As the manager of the factory you have to make a plan to produce all the N candies. While the sum of producing cost should be minimized.
 
Input
  There are multiple test cases.
  For each case, the first line contains three integers N(1<=N<=100), M(1<=M<=100), K(1<=K<=100) . The meaning is described above.
  Then N lines follow, each line contains 2 integers si and ti(0 <= si < ti <100000).
  Then N lines follow, each line contains M integers, the j-th integer of the i-th line indicating Cij(1<=Cij<=100000) .
  Then N lines follow, each line contains M integers, the j-th integer of the i-th line indicating Dij(1<=Dij<=100000) .
  Then N lines follow, each line contains N integers, the i2-th integer of the i1-th line indicating Ei1i2(1<=Ei1j2<=100000) . 
  Then N lines follow, each line contains N integers, the i2-th integer of the i1-th line indicating Fi1i2(1 <= Fi1j2<=100000) . 
  Since the same candy will only be produced once, Eii and Fii are meaningless and will always be -1.
  The input ends by N=0 M=0 K=0. Cases are separated with a blank line.
 
Output
For each test case, if all of M candies can be produced, output the sum of minimum producing cost in a single line. Otherwise output -1.
 
Sample Input
3 2 1
4 7
2 4
8 9
4 4
3 3
3 3
2 8
12 3
14 6
-1 1 1
1 -1 1
1 1 -1
-1 5 5
5 -1 5
5 5 -1

1 1 2
1 5
5
5
-1
-1

0 0 0

 
Sample Output
11
-1

Hint

For the first example, the answer can be achieved in the following way:
In the picture, S i represents setting up time for candy i, A i represents changing time for candy i and P i represents producing time for candy i .
So the total cost includes: 

setting up machine 1 for candy 1, costs 2
setting up machine 2 for candy 2, costs 3
changing state from candy 2 to candy 3, costs 5
late start of candy 2, costs 1
题意
有N个糖果需要被生产,有M个机器,K代表额外花费系数
N行代表第i个糖果只能在[s[i],t[i]]的时间内被生产
接下来N*M代表生产第i个糖果的机器j在C[i][j]时间被开启
接下来N*M代表生产糖果i机器j的基础花费D[i][j],如果在第s[i]<p<t[i]的时间开始生产,也可以在t[i]生产出糖果,但需要额外花费(p-s[i])*K的花费
接下来N*N代表把机器J正在生产i糖果改成生产j糖果,所需的额外时间为E[i][j]
接下来N*N代表把机器J正在生产i糖果改成生产j糖果,所需的基础花费F[i][j],如果在第s[j]<p<t[j]的时间开始生产,也可以在t[j]生产出糖果,但需要额外花费(p-s[j])*K的花费
题解
一道比较复杂的费用流题,题意读了很久
为了保证糖果从源点S流出一次从汇点T流入一次,可以把N个糖果拆成左右糖,然后(S,左糖,1,0),然后(右糖,T,1,0)
然后考虑一个机器生产完i再去生产j的情况,如果时间允许,就连(左糖i,右糖j,1,基础花费F+额外花费)
然后新建一个点u,(S,u,m,0),(u,每个机器,1,0),如果机器i生产糖果j的时间C[j][i]<t[j]就连线(机器,右糖,1,基础花费D+额外花费)
代码
 #include<bits/stdc++.h>
using namespace std; const int N=1e5+;
const int M=2e5+;
const int INF=0x3f3f3f3f; int FIR[N],FROM[M],TO[M],CAP[M],FLOW[M],COST[M],NEXT[M],tote;
int pre[N],dist[N],q[];
bool vis[N];
int n,m,S,T;
void init()
{
tote=;
memset(FIR,-,sizeof(FIR));
}
void addEdge(int u,int v,int cap,int cost)
{
FROM[tote]=u;
TO[tote]=v;
CAP[tote]=cap;
FLOW[tote]=;
COST[tote]=cost;
NEXT[tote]=FIR[u];
FIR[u]=tote++; FROM[tote]=v;
TO[tote]=u;
CAP[tote]=;
FLOW[tote]=;
COST[tote]=-cost;
NEXT[tote]=FIR[v];
FIR[v]=tote++;
}
bool SPFA(int s, int t)
{
memset(dist,INF,sizeof(dist));
memset(vis,false,sizeof(vis));
memset(pre,-,sizeof(pre));
dist[s] = ;vis[s]=true;q[]=s;
int head=,tail=;
while(head!=tail)
{
int u=q[++head];vis[u]=false;
for(int v=FIR[u];v!=-;v=NEXT[v])
{
if(dist[TO[v]]>dist[u]+COST[v]&&CAP[v]>FLOW[v])
{
dist[TO[v]]=dist[u]+COST[v];
pre[TO[v]]=v;
if(!vis[TO[v]])
{
vis[TO[v]] = true;
q[++tail]=TO[v];
}
}
}
}
return pre[t]!=-;
}
void MCMF(int s, int t, int &cost, int &flow)
{
flow=;
cost=;
while(SPFA(s,t))
{
int Min=INF;
for(int v=pre[t];v!=-;v=pre[TO[v^]])
Min=min(Min,CAP[v]-FLOW[v]);
for(int v=pre[t];v!=-;v=pre[TO[v^]])
{
FLOW[v]+=Min;
FLOW[v^]-=Min;
cost+=COST[v]*Min;
}
flow+=Min;
}
}
int main()
{
int N,M,K,u,ss[],tt[],C[][],D[][],E[][],F[][];
while(scanf("%d%d%d",&N,&M,&K)!=EOF,N||M||K)
{
init();
for(int i=;i<=N;i++)
scanf("%d%d",&ss[i],&tt[i]);
for(int i=;i<=N;i++)for(int j=;j<=M;j++)
scanf("%d",&C[i][j]);
for(int i=;i<=N;i++)for(int j=;j<=M;j++)
scanf("%d",&D[i][j]);
for(int i=;i<=N;i++)for(int j=;j<=N;j++)
scanf("%d",&E[i][j]);
for(int i=;i<=N;i++)for(int j=;j<=N;j++)
scanf("%d",&F[i][j]); S=,u=N+N+M+,T=N+N++M+,n=T;
for(int i=;i<=N;i++)
{
addEdge(S,i,,);
addEdge(N+i,T,,);
for(int j=;j<=N;j++)
{
if(i!=j&&tt[i]+E[i][j]<tt[j])
{
int c=(max(tt[i]+E[i][j],ss[j])-ss[j])*K;
addEdge(i,N+j,,c+F[i][j]);
}
}
}
addEdge(S,u,M,);
for(int i=;i<=M;i++)
{
addEdge(u,N+N+i,,);
for(int j=;j<=N;j++)
{
if(C[j][i]<tt[j])
{
int c=(max(C[j][i],ss[j])-ss[j])*K;
addEdge(N+N+i,N+j,,c+D[j][i]);
}
}
}
int flow,cost;
MCMF(S,T,cost,flow);
if(flow!=N)printf("-1\n");
else printf("%d\n",cost);
}
return ;
}

HDU 4780 Candy Factory(拆点费用流)的更多相关文章

  1. HDU 4780 Candy Factory

    Candy Factory Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ...

  2. BZOJ 1877 晨跑 拆点费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...

  3. CF 277E Binary Tree on Plane (拆点 + 费用流) (KM也可做)

    题目大意: 平面上有n个点,两两不同.现在给出二叉树的定义,要求树边一定是从上指向下,即从y坐标大的点指向小的点,并且每个结点至多有两个儿子.现在让你求给出的这些点是否能构成一棵二叉树,如果能,使二叉 ...

  4. HDU 5988 Coding Contest(浮点数费用流)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5988 题意:在acm比赛的时候有多个桌子,桌子与桌子之间都有线路相连,每个桌子上会有一些人和一些食物 ...

  5. HDU 4744 Starloop System(ZKW费用流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4744 题意:三维空间n个点,每个点有一个wi值.每对点的距离定义为floor(欧拉距离),每对点之间建 ...

  6. HDU 5644 King's Pliot【费用流】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5644 题意: 每天都有p[i]个飞行员进行阅兵,飞行员只工作一天. m个休假公式,花费tt[i]元让 ...

  7. 【拆点费用流】【HDU1853】【 Cyclic Tour】

    题意: 有N个城市,M条单向路,Tom想环游全部城市,每次至少环游2个城市,每个城市只能被环游一次.由于每条单向路都有长度,要求游遍全部城市的最小长度. // 给定一个有向图,必须用若干个环来覆盖整个 ...

  8. 洛谷P2604 网络扩容 拆点+费用流

    原题链接 这题貌似比较水吧,最简单的拆点,直接上代码了. #include <bits/stdc++.h> using namespace std; #define N 1000 #def ...

  9. HDU - 2732 Leapin' Lizards (拆点最大流)

    题意:有N*M的矩形,每个格点有一个柱子,每根柱子有高度c,允许蜥蜴经过这根柱子c次,开始有一些蜥蜴在某些柱子上,它们要跳出这个矩形,每步最大能跳d个单位,求最少有多少蜥蜴不能跳出这个矩形. 分析:转 ...

随机推荐

  1. paramiko模块(01-04节)、SSH

    1.  SSH(安全外壳协议) SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定:SSH 为建立在应用层基础上的安全协议.SS ...

  2. 使用ssh服务管理远程主机

  3. Django 数据库迁移

    Django 数据库迁移 DATABASES = { # Django默认配置使用sqlite3数据库 # 'default': { # 'ENGINE': 'django.db.backends.s ...

  4. 使用swig工具为go语言与c++进行交互

    环境: centos_7_x86_x64,gcc_4.8.5 一.安装swig 1. 安装pcre yum install -y pcre pcre-tools pcre-devel 2. 安装yac ...

  5. golang-generate-1pixel-image

    package main import ( "bytes" "encoding/base64" "flag" "html/temp ...

  6. web前端3.0时代,“程序猿”如何“渡劫升仙”?

    世界上目前已经有超过18亿的网站.其中只有不到2亿的网站是活跃的.且每天都有几千个新网站不断被创造出来. 2017年成果显著,网络上出现了像Vue这样的新JavaScript框架:基于用户体验流程的开 ...

  7. 一篇讲解如何调试pg 扩展的文章

    以下链接这片关于pg 扩展调试的文章挺不错,记录下 http://big-elephants.com/2015-10/writing-postgres-extensions-part-iii/     ...

  8. java设计模式--UML类图

    2016-06-07 22:46:16 下面简单介绍UML类图:(图是截取的,大家可以用UML工具去画) 1.描述类的类图 类:Person 属性:name   age   sex 访问权限:-  表 ...

  9. LeetCode - 刷题经验

    1.加快代码速度 刷了前面几道题发现速度总是处于尾部10%,刚开始非常不服,后来仔细一看那些排名靠前的提交,发现了猫腻.几乎每一个提交都有这样的一段代码: static const auto io_s ...

  10. 20175227张雪莹 2018-2019-2 《Java程序设计》第三周学习总结

    20175227张雪莹 2018-2019-2 <Java程序设计>第三周学习总结 教材学习内容总结 (仅在此列举个性化学习总结) 一.编程语言的几个发展阶段. 1.面向机器语言:汇编语言 ...