描述

有n种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付k元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望.

输入

一行,一个数字N,N<=10000

输出

要付出多少钱. 保留二位小数

样例输入

3

样例输出

21.25

标签

bzoj1426


期望dp好题。

这题貌似要倒起推状态。

我们用g[i]表示已经收集i种邮票,收集全需要的期望次数。

f[i]表示已经收集i种邮票,收集全需要的期望花费。

这样发现

i的状态有i/n" role="presentation" style="position: relative;">i/ni/n的概率还是i的状态,有(n−i)/n" role="presentation" style="position: relative;">(n−i)/n(n−i)/n的概率变成(i+1)的状态(因此倒着推方便)。

于是有状态转移方程(化简后):

g[i]=g[i+1]+n/(n−i)" role="presentation" style="position: relative;">g[i]=g[i+1]+n/(n−i)g[i]=g[i+1]+n/(n−i)

f[i]=g[i]∗(n/(n−i))+f[i+1]" role="presentation" style="position: relative;">f[i]=g[i]∗(n/(n−i))+f[i+1]f[i]=g[i]∗(n/(n−i))+f[i+1]

代码:

#include<bits/stdc++.h>
#define N 10005
using namespace std;
int n;
double f[N],g[N];
int main(){
    cin>>n,f[n]=0,g[n]=0;
    for(int i=n-1;~i;--i)g[i]=g[i+1]+1.0*n/(n-i),f[i]=1.0*n*g[i]/(n-i)+f[i+1];
    printf("%.2lf",f[0]);
    return 0;
}

2018.08.31 bzoj1426 收集邮票(期望dp)的更多相关文章

  1. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  2. 2018.08.30 bzoj4318: OSU!(期望dp)

    传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...

  3. 2018.08.30 Tyvj1952 Easy(期望dp)

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  4. 【BZOJ1426】收集邮票 期望DP

    题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...

  5. 收集邮票 (概率dp)

    收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...

  6. 【BZOJ1426】收集邮票 期望

    [BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...

  7. 2018.08.31 bzoj1419 Red is good(期望dp)

    描述 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. 输入 一行输入两个数R,B,其 ...

  8. bzoj1426 (洛谷P4550) 收集邮票——期望

    题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...

  9. 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)

    传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...

随机推荐

  1. PHP中间件--ICE

    ICE(Internet Communications Engine)是Zeroc提供的一款高性能的中间件.使用ICE能使得php(或c++,java,python)与java,c++,.net,py ...

  2. cookie和session的比较

    cookie和session的比较 一.对于cookie: ①cookie是创建于服务器端 ②cookie保存在浏览器端 ③cookie的生命周期可以通过cookie.setMaxAge(2000); ...

  3. mysql数据库复制

    核心命令是 myssqldump mysqldump --host=host1 --opt sourceDb| mysql --host=host2 -C targetDb 详情参考: MySQL数据 ...

  4. Java编程最差实践

    原文地址:http://www.odi.ch/prog/design/newbies.php 每天在写Java程序, 其实里面有一些细节大家可能没怎么注意, 这不, 有人总结了一个我们编程中常见的问题 ...

  5. ABAP-语音输出

    REPORT ZRICO_SPEAK. include ole2incl. data:ole type ole2_object, voice type ole2_object. parameters: ...

  6. Ztree学习(-)简单例子

    https://www.cnblogs.com/shinhwazt/p/5828031.html ztree包:https://pan.baidu.com/s/1vOgGm_elF-lF0VowoHw ...

  7. where 命令

    在当前目录及path环境变量指定的目录中搜索相应文件 例:where msbuild 查找msbuild的位置

  8. How to Pronounce OF

    How to Pronounce OF Tagged With: OF Reduction Study the OF reduction.  There are many reductions in ...

  9. springboot+jsp 遇到的坑

    springboot  使用jsp: 1,修改配置文件, spring: mvc: view: prefix: /WEB-INF/jsp/ suffix: .jsp 2,pom 加入: <dep ...

  10. ReentrantLock 使用

    从使用场景的角度出发来介绍对ReentrantLock的使用,相对来说容易理解一些. 场景1:如果发现该操作已经在执行中则不再执行(有状态执行) a.用在定时任务时,如果任务执行时间可能超过下次计划执 ...