描述

有n种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付k元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望.

输入

一行,一个数字N,N<=10000

输出

要付出多少钱. 保留二位小数

样例输入

3

样例输出

21.25

标签

bzoj1426


期望dp好题。

这题貌似要倒起推状态。

我们用g[i]表示已经收集i种邮票,收集全需要的期望次数。

f[i]表示已经收集i种邮票,收集全需要的期望花费。

这样发现

i的状态有i/n" role="presentation" style="position: relative;">i/ni/n的概率还是i的状态,有(n−i)/n" role="presentation" style="position: relative;">(n−i)/n(n−i)/n的概率变成(i+1)的状态(因此倒着推方便)。

于是有状态转移方程(化简后):

g[i]=g[i+1]+n/(n−i)" role="presentation" style="position: relative;">g[i]=g[i+1]+n/(n−i)g[i]=g[i+1]+n/(n−i)

f[i]=g[i]∗(n/(n−i))+f[i+1]" role="presentation" style="position: relative;">f[i]=g[i]∗(n/(n−i))+f[i+1]f[i]=g[i]∗(n/(n−i))+f[i+1]

代码:

#include<bits/stdc++.h>
#define N 10005
using namespace std;
int n;
double f[N],g[N];
int main(){
    cin>>n,f[n]=0,g[n]=0;
    for(int i=n-1;~i;--i)g[i]=g[i+1]+1.0*n/(n-i),f[i]=1.0*n*g[i]/(n-i)+f[i+1];
    printf("%.2lf",f[0]);
    return 0;
}

2018.08.31 bzoj1426 收集邮票(期望dp)的更多相关文章

  1. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  2. 2018.08.30 bzoj4318: OSU!(期望dp)

    传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...

  3. 2018.08.30 Tyvj1952 Easy(期望dp)

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  4. 【BZOJ1426】收集邮票 期望DP

    题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...

  5. 收集邮票 (概率dp)

    收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...

  6. 【BZOJ1426】收集邮票 期望

    [BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...

  7. 2018.08.31 bzoj1419 Red is good(期望dp)

    描述 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. 输入 一行输入两个数R,B,其 ...

  8. bzoj1426 (洛谷P4550) 收集邮票——期望

    题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...

  9. 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)

    传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...

随机推荐

  1. Dictionary 字典的使用

    Dim a, d, i             '创建几个变量Set d = CreateObject("Scripting.Dictionary")d.Add "a&q ...

  2. Spring MVC 异常处理 - DefaultHandlerExceptionResolver

    对一些特殊的异常进行处理,比如方法类型不匹配, 转换错误.

  3. mybatis 常用jdbcType数据类型

    来自 : http://blog.csdn.net/paincupid/article/details/50922981

  4. 13 python 常用的内置方法介绍

    1.isinstance(obj,cls)和issubclass(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls 的对象 class Foo(object) ...

  5. python之内置函数:map ,filter ,reduce总结

    map函数: #处理序列中的每个元素,得到的结果是一个'列表',该列表元素个数及位置与原来一样 filter函数: #遍历序列中的每个元素,判断每个元素得到一个布尔值,如果是true,则留下来 peo ...

  6. kafka 修改partition,删除topic,查询offset

    修改分区个数: ./kafka-topics./kafka/<id_of_kafka> --alter --partitions 10 --topic test_topic 上面命令将te ...

  7. iOS Hardware Guide

    来自U3D文档 Hardware models The following list summarizes iOS hardware available in devices of various g ...

  8. 【转】oracle 体系结构

    前几天面试的时候面试官才问过我Oracle的体系结构,让我在一张白纸上画出来.回头想想当时答得还不错,大部分内容都描述出来了,呵呵,刚才在网上看到一篇讲解ORACLE体系结构的文章,觉得不错,转过来存 ...

  9. Haskell语言学习笔记(26)Identity, IdentityT

    Identity Monad newtype Identity a = Identity { runIdentity :: a } instance Functor Identity where fm ...

  10. MapReduce超时原因(Time out after 300 secs)

    目前碰到过三种原因导致 Time out after 300 secs. 1. 死循环 这是最常见的原因.显式的死循环很容易定位,隐式的死循环就比较麻烦了,比如正则表达式.曾经用一个网上抄来的邮箱正则 ...