题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle

题解:

这道题要求 求连续的数组值,加和最大。

试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:

1. 要么加入之前的数组加和之中(跟别人一组)

2. 要么自己单立一个数组(自己单开一组)

所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。

所以利用一个sum数组,记录每一轮sum的最大值,sum[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即位答案。

代码如下;

 1     public int maxSubArray(int[] A) {
 2         int[] sum = new int[A.length];
 3         
 4         int max = A[0];
 5         sum[0] = A[0];
 6  
 7         for (int i = 1; i < A.length; i++) {
 8             sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
 9             max = Math.max(max, sum[i]);
         }
  
         return max;
     }

同时发现,这道题是经典的问题,是1977布朗的一个教授提出来的。

http://en.wikipedia.org/wiki/Maximum_subarray_problem

并发现,这道题有两种经典解法,一个是:Kadane算法,算法复杂度O(n);另外一个是分治法:算法复杂度为O(nlogn)。

1. Kadane算法

代码如下:

 1     public int maxSubArray(int[] A) {
 2         int max_ending_here = 0;
 3         int max_so_far = Integer.MIN_VALUE;
 4         
 5         for(int i = 0; i < A.length; i++){  
 6             if(max_ending_here < 0) 
 7                  max_ending_here = 0;  
 8             max_ending_here += A[i];  
 9             max_so_far = Math.max(max_so_far, max_ending_here);   
         }  
         return max_so_far; 
     }

2. 分治法:

代码如下:

 1     public int maxSubArray(int[] A) {
 2          return divide(A, 0, A.length-1); 
 3     }
 4     
 5   public int divide(int A[], int low, int high){  
 6         if(low == high)
 7             return A[low];  
 8         if(low == high-1)  
 9             return Math.max(A[low]+A[high], Math.max(A[low], A[high]));
             
         int mid = (low+high)/2;  
         int lmax = divide(A, low, mid-1);  
         int rmax = divide(A, mid+1, high); 
         
         int mmax = A[mid];  
         int tmp = mmax;  
         for(int i = mid-1; i >=low; i--){  
             tmp += A[i];  
             if(tmp > mmax)
                 mmax = tmp;  
         }  
         tmp = mmax;  
         for(int i = mid+1; i <= high; i++){  
             tmp += A[i];  
             if(tmp > mmax)
                 mmax = tmp;  
         }  
         return Math.max(mmax, Math.max(lmax, rmax));  
           
     } 

Reference:

http://en.wikipedia.org/wiki/Maximum_subarray_problem

http://www.cnblogs.com/statical/articles/3054483.html

http://blog.csdn.net/xshengh/article/details/12708291

Maximum Subarray leetcode java的更多相关文章

  1. Maximum Subarray - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Maximum Subarray - LeetCode 注意点 最大值有可能是正负数交替着出现 解法 解法一:一次遍历即可.当sum小于0的时候就重新开始 ...

  2. Maximum Subarray——LeetCode

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  3. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. LeetCode 53. 最大子序和(Maximum Subarray)

    53. 最大子序和 53. Maximum Subarray 题目描述 给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. LeetCode53. M ...

  5. [Leetcode][Python]53: Maximum Subarray

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...

  6. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  7. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  8. LeetCode: Maximum Subarray 解题报告

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  9. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

随机推荐

  1. CSUOJ 1956 数字和

    Description 长者对小明施加了膜法,使得小明每天起床就像马丁的早晨一样. 今天小明早上起来后发现身体虽然变小,头脑依旧不变变傻. 他有一条纸带,上面有n个数字,第i个数字为Ai. 他想把纸带 ...

  2. CSS基础-DAY1

    CSS 概述CSS 指层叠样式表 (Cascading Style Sheets),样式定义了如何显示 HTML文件中的标签元素,CSS是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标 ...

  3. tftp协议

    <前言> 嵌入式开发是一个交叉开发的模式,需要将宿主机上的文件烧写到目标机上. 方式: JTAG USB 串口 网络 <tftp下载> 首先需要将宿主机架成一个TFTP的服务器 ...

  4. anaconda安装tensorflow后pip安装jieba出错的问题

    安装jieba出错,参考https://www.cnblogs.com/minsons/p/7872647.html TypeError: parse() got an unexpected keyw ...

  5. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

  6. [Luogu5162]WD与积木(多项式求逆)

    不要以为用上Stirling数就一定离正解更近,FFT都是从DP式本身出发的. 设f[i]为i个积木的所有方案的层数总和,g[i]为i个积木的方案数,则答案为$\frac{f[i]}{g[i]}$ 转 ...

  7. linux中的文件编码及编码修改

    查看文件编码 在Linux中查看文件编码可以通过以下几种方式: 1.在Vim中可以直接查看文件编码 :set fileencoding 即可显示文件编码格式. 如果你只是想查看其它编码格式的文件或者想 ...

  8. hdu 2110 基础母函数

    题意:退出本身并不麻烦,麻烦的是,退出的人需要取走相应比例(1/3)金额的资产.假设公司此时一共有n种价值的资产,每种价值的资产数量已知,请帮助心烦意乱的XHD夫妇计算一共有多少种分割资产的方法.   ...

  9. Dijkstra_Liu博客100篇祭

    创建博客,有两年三个月了.今天,写了100篇随笔了,又正值我的15岁生日,还是值得纪念一下. 两年过去了,我从学习:队列.栈.模拟.背包慢慢地变成了:Tarjan.线段树.树剖. 我也从一个初一的天真 ...

  10. window.open如何返回值给父窗口

    父窗口代码 function showMyWindowNew() { var iTop = (window.screen.availHeight - 30 - 450) / 2; //获得窗口的水平位 ...