vjudge 题面传送门

首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算——\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了。

考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以应用于 lcm/gcd,因为 \(\operatorname{lcm}\) 即可看作每个数的每个质因子次数取 \(\max\),\(\gcd\) 即可看作每个数的每个质因子次数取 \(\min\),因此我们同样有 \(\operatorname{lcm}(S)=\prod\limits_{\varnothing\ne T\subseteq S}\gcd(T)^{(-1)^{|T|+1}}\),因此我们有 \(ans=\prod\limits_{\varnothing\ne T\subseteq S}f_{\gcd(T)}^{(-1)^{|T|+1}}\)。

到这里还是不太容易直接求,不过考虑有个东西叫莫比乌斯反演,我们记 \(a_d=\sum\limits_{\gcd(T)=d}(-1)^{|T|+1}\),再记 \(b_d=\sum\limits_{d\mid\gcd(T)}(-1)^{|T|+1}\),那么显然 \(ans=\prod\limits_{d}f_d^{a_d}\),接下来考虑怎样求 \(a_d\),按照莫比乌斯反演的套路有 \(b_d=\sum\limits_{d|n}a_n\),即 \(b=a*I\),反演以下可得 \(a=b*\mu\),即 \(a_d=\sum\limits_{d\mid n}b_n\mu(\dfrac{n}{d})\),枚举倍数即可求出 \(a_d\)。那么怎么求 \(b_d\) 呢?记 \(U=\{a_x|d\mid a_x\}\),那么显然所有 \(U\) 的子集都可以成为求和式中的 \(T\),即 \(b_d=\sum\limits_{i=1}^{|U|}\dbinom{|U|}{i}(-1)^i\),根据二项式定理该值就等于 \([|U|>0]\),随便算一下即可,时间复杂度 \(a_i\log a_i\)。

const int MAXV=1e6;
const int MOD=1000000007;
int qpow(int x,int e){
// eprintf("%d\n",e);
if(e<0) e+=MOD-1;int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,mu[MAXV+5],pr[MAXV/10+5],prcnt=0;
bitset<MAXV+5> vis;
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){pr[++prcnt]=i;mu[i]=-1;}
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0) break;
mu[i*pr[j]]=-mu[i];
}
}
}
int is[MAXV+5],f[MAXV+5],fib[MAXV+5];
int main(){
sieve(MAXV);scanf("%d",&n);
for(int i=1,x;i<=n;i++) scanf("%d",&x),is[x]=1;
for(int i=1;i<=MAXV;i++) for(int j=i;j<=MAXV;j+=i) is[i]|=is[j];
for(int i=1;i<=MAXV;i++) for(int j=i;j<=MAXV;j+=i) f[i]+=is[j]*mu[j/i];
fib[1]=fib[2]=1;for(int i=3;i<=MAXV;i++) fib[i]=(fib[i-1]+fib[i-2])%MOD;
int mul=1;for(int i=1;i<=MAXV;i++) mul=1ll*mul*qpow(fib[i],f[i])%MOD;
printf("%d\n",mul);
return 0;
}

51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)的更多相关文章

  1. 【51nod1355】斐波那契的最小公倍数(min-max容斥)

    [51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\su ...

  2. 51nod1355-斐波那契的最小公倍数【min-max容斥】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1355 题目大意 定义\(f_i\)表示斐波那契的第\(i\)项,给出一个 ...

  3. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  4. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...

  5. 51Nod - 1242 斐波那契(快速幂)

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  6. 51nod 1031+斐波那契和杨辉三角的一些基础知识

    直接斐波那契... #include<stdio.h> #include<queue> #include<string.h> #include<iostrea ...

  7. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  8. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  9. 51nod 1350 斐波那契表示(递推+找规律)

    传送门 题意 分析 我们发现该数列遵循下列规律: 1 1,2 1,2,2 1,2,2,2,3 1,2,2,2,3,2,3,3 我们令A[i]表示f[i]开始长为f[i-1]的i的最短表示和 那么得到A ...

随机推荐

  1. Vue3学习(六)之使用Vue3进行数据绑定及显示列表数据

    一.写在前面 说来还是比较惭愧的,从周二开始事就比较多,周三还电脑坏了,然后修电脑等等一些杂事,忙的团团转,因为周二.周三自己走的过多了,导致不敢直腰,周四卧床一天. 之前都听说<陈情令> ...

  2. Golang通脉之类型定义

    自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. type是Go语法里的重要而且常用的关键字,type绝 ...

  3. zlib开发笔记(四):zlib库介绍、编译windows vs2015x64版本和工程模板

    前言   Qt使用一些压缩解压功能,介绍过libzip库编译,本篇说明zlib库.需要用到zlib的msvc2015x64版本,编译一下.   版本编译引导 zlib在windows上的mingw32 ...

  4. 【二食堂】Alpha - Scrum Meeting 11

    Scrum Meeting 11 例会时间:4.21 18:00~18:20 进度情况 组员 进度 今日任务 李健 1. 登录注册页面前后端对接issue 1. 登录注册页面前后端对接issue2. ...

  5. ruby基本图片上传

    图片上传问题 在我们的项目里,需要实现海报的图片上传,便于更好地向外界展示一个社团活动的基本内容,但是在处理中间件相关问题时遇到了一点小小的挫折.不过这并不要紧,OSS对象存储服务固然好,但是本着交完 ...

  6. BUAA 2020 软件工程 提问回顾与个人总结

    BUAA 2020 软件工程 提问回顾与个人总结 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 提问回顾 ...

  7. FastAPI 学习之路(五十六)将token存放在redis

    在之前的文章中,FastAPI 学习之路(二十九)使用(哈希)密码和 JWT Bearer 令牌的 OAuth2,FastAPI 学习之路(二十八)使用密码和 Bearer 的简单 OAuth2,Fa ...

  8. 第32篇-解析interfacevirtual字节码指令

    在前面介绍invokevirtual指令时,如果判断出ConstantPoolCacheEntry中的_indices字段的_f2属性的值为空,则认为调用的目标方法没有连接,也就是没有向Constan ...

  9. stm32直流电机驱动与测速

    stm32直流电机驱动与测速 说实话就现在的市场应用中stm32已经占到了绝对住到的地位,51已经成为过去式,32的功能更加强大,虽然相应的难度有所增加,但是依然阻止不了大家学习32的脚步,不说大话了 ...

  10. Machine learning (6-Logistic Regression)

    1.Classification However, 2.Hypothesis Representation Python code: import numpy as np def sigmoid(z) ...