import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes
from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集
def load_data():
'''
加载用于分类问题的数据集。这里使用 scikit-learn 自带的 digits 数据集
'''
digits=datasets.load_digits()
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #伯努利贝叶斯BernoulliNB模型
def test_BernoulliNB(*data):
X_train,X_test,y_train,y_test=data
cls=naive_bayes.BernoulliNB()
cls.fit(X_train,y_train)
print('Training Score: %.2f' % cls.score(X_train,y_train))
print('Testing Score: %.2f' % cls.score(X_test, y_test)) # 产生用于分类问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_BernoulliNB
test_BernoulliNB(X_train,X_test,y_train,y_test)

def test_BernoulliNB_alpha(*data):
'''
测试 BernoulliNB 的预测性能随 alpha 参数的影响
'''
X_train,X_test,y_train,y_test=data
alphas=np.logspace(-2,5,num=200)
train_scores=[]
test_scores=[]
for alpha in alphas:
cls=naive_bayes.BernoulliNB(alpha=alpha)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test)) ## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,train_scores,label="Training Score")
ax.plot(alphas,test_scores,label="Testing Score")
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel("score")
ax.set_ylim(0,1.0)
ax.set_title("BernoulliNB")
ax.set_xscale("log")
ax.legend(loc="best")
plt.show() # 调用 test_BernoulliNB_alpha
test_BernoulliNB_alpha(X_train,X_test,y_train,y_test)

def test_BernoulliNB_binarize(*data):
'''
测试 BernoulliNB 的预测性能随 binarize 参数的影响
'''
X_train,X_test,y_train,y_test=data
min_x=min(np.min(X_train.ravel()),np.min(X_test.ravel()))-0.1
max_x=max(np.max(X_train.ravel()),np.max(X_test.ravel()))+0.1
binarizes=np.linspace(min_x,max_x,endpoint=True,num=100)
train_scores=[]
test_scores=[]
for binarize in binarizes:
cls=naive_bayes.BernoulliNB(binarize=binarize)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test, y_test)) ## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(binarizes,train_scores,label="Training Score")
ax.plot(binarizes,test_scores,label="Testing Score")
ax.set_xlabel("binarize")
ax.set_ylabel("score")
ax.set_ylim(0,1.0)
ax.set_xlim(min_x-1,max_x+1)
ax.set_title("BernoulliNB")
ax.legend(loc="best")
plt.show() # 调用 test_BernoulliNB_binarize
test_BernoulliNB_binarize(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型的更多相关文章

  1. 【sklearn朴素贝叶斯算法】高斯分布/多项式/伯努利贝叶斯算法以及代码实例

    朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向 ...

  2. 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯

    之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...

  3. 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式

    之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...

  4. 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型

    from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...

  5. 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型

    from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  9. 吴裕雄 python 机器学习——高斯贝叶斯分类器GaussianNB

    import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selectio ...

随机推荐

  1. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  2. Selenium3+python自动化009- 多选框

    多选框 # 随机选择多选框# sports=driver.find_elements_by_name("sport")# maxnum=len(sports)# num=rando ...

  3. solr es调优化和问题排查

    (1)TOP 显示当前进程状态,结合 ps -aux 可以看是哪一个服务.mpstat 可以看是cpu的负载 (2)TOP -H -u 用户名 显示该用户下 所有的线程. 还有pstree (3)js ...

  4. java序列化与反序列化的使用

    个人博客 地址:http://www.wenhaofan.com/article/20180925214701 1.什么是序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字 ...

  5. Eclipse项目工程导入到IDEA继续开发-超详细

    现在Java开发的主流工具是IDEA,不是说Eclipse,各有各的特色.不过我现在深深的爱上了idea这个工具. 但是之前很多项目都是用eclipse开发的,现在就转入到idea中进行继续开发. 1 ...

  6. RN开发-JSX基础语法

    1.环境        react.js        react-dom.js        browser.min.js(解码器)        2.载入方式        内联.外联       ...

  7. android 代码实现模拟用户点击、滑动等操作

    /** * 模拟用户点击 * * @param view 要触发操作的view * @param x 相对于要操作view的左上角x轴偏移量 * @param y 相对于要操作view的左上角y轴偏移 ...

  8. eclipse怎么debug项目

    1.打断点,服务器debug启动 2.debug:打断点,加项目.f5:进入方法    f6:下一行代码   f8:执行到下一个断点处

  9. 洛谷P1042 乒乓球

    https://www.luogu.org/problem/P1042 #include<bits/stdc++.h> using namespace std; ]; int w,l; i ...

  10. lua学习,笔者自用

    标识符与关键字A:常量用全大写和下划线,eg: My_ACCOUNTB: 变量的第一个字母小写,eg: strNumberC: 全局变量第一个字母用小写g表示,eg: gMyAcountD: 函数名第 ...