bzoj3944: Sum 杜教筛板子题
板子题(卡常)
也可能是用map太慢了
/**************************************************************
Problem: 3944
User: walfy
Language: C++
Result: Accepted
Time:9932 ms
Memory:84304 kb
****************************************************************/
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=5000000+10,maxn=400000+10,inf=0x3f3f3f3f;
int prime[N],cnt,mu[N];
ll phi[N];
bool mark[N];
map<int,int>muu;
map<int,int>::iterator it1;
map<int,ll>phii;
map<int,ll>::iterator it2;
void init()
{
mu[1]=phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<N;i++)mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
ll getmu(ll n)
{
if(n<N)return mu[n];
if((it1=muu.find(n))!=muu.end())return it1->se;
ll ans=1;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=1ll*(j-i+1)*getmu(n/i);
}
return muu[n]=ans;
}
ll getphi(ll n)
{
if(n<N)return phi[n];
if((it2=phii.find(n))!=phii.end())return it2->se;
ll ans=n*(n+1)/2;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=1ll*(j-i+1)*getphi(n/i);
}
return phii[n]=ans;
}
int main()
{
init();
int T;scanf("%d",&T);
while(T--)
{
ll n;scanf("%lld",&n);
printf("%lld %lld\n",getphi(n),getmu(n));
}
return 0;
}
/********************
10
2147483638
2147483639
2147483640
2147483641
2147483642
2147483643
2147483644
2147483645
2147483646
2147483647
********************/
不用map的版本
/**************************************************************
Problem: 3944
User: walfy
Language: C++
Result: Accepted
Time:7600 ms
Memory:67700 kb
****************************************************************/
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=2000000+10,maxn=400000+10,inf=0x3f3f3f3f;
int prime[N],cnt,mu[N];
ll phi[N],n,muu[N],phii[N];
bool mark[N],vis[N];
void init()
{
mu[1]=phi[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<N;i++)mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
void get(ll x)
{
if(x<N)return ;
if(vis[n/x])return ;
vis[n/x]=1;
phii[n/x]=x*(x+1)/2;
muu[n/x]=1;
for(ll i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
if(x/i<N)phii[n/x]-=1ll*(j-i+1)*phi[x/i],muu[n/x]-=1ll*(j-i+1)*mu[x/i];
else
{
get(x/i);
phii[n/x]-=1ll*(j-i+1)*phii[n/(x/i)];
muu[n/x]-=1ll*(j-i+1)*muu[n/(x/i)];
}
}
}
int main()
{
init();
int T;scanf("%d",&T);
while(T--)
{
memset(vis,0,sizeof vis);
scanf("%lld",&n);
if(n<N)printf("%lld %d\n",phi[n],mu[n]);
else
{
memset(vis,0,sizeof vis);get(n);
printf("%lld %lld\n",phii[1],muu[1]);
}
}
return 0;
}
/********************
10
2147483638
2147483639
2147483640
2147483641
2147483642
2147483643
2147483644
2147483645
2147483646
2147483647
********************/
bzoj3944: Sum 杜教筛板子题的更多相关文章
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
- [bzoj3944] sum [杜教筛模板]
题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...
- bzoj 3944 Sum —— 杜教筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...
- 3944: Sum[杜教筛]
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3471 Solved: 946[Submit][Status][Discuss] ...
- 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)
题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...
- 洛谷P4213 Sum(杜教筛)
题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1=∑i=1 ...
- BZOJ 3944: Sum [杜教筛]
3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- P6070 [RC-02] GCD [杜教筛,莫比乌斯反演]
没啥好说的,杜教筛板子题. \[\sum_{i=1}^{N} \sum_{j=1}^{N}\sum_{p=1}^{\lfloor \frac{N}{j} \rfloor}\sum_{q=1}^{\lf ...
随机推荐
- WebService(JAX-WS、XFire、Axis三种)获取客户端ip
WebService(JAX-WS.XFire.Axis三种)获取客户端ip JAX-WS.XFire.Axis三种webservice的获取客户端IP的简单实现过程: 1,基于JDK6 jax-ws ...
- 20145310 《网络对抗》 MSF基础应用
实验要求 掌握metasploit的基本应用方式,掌握常用的三种攻击方式的思路. 一个主动攻击,如ms08_067; 一个针对浏览器的攻击,如ms11_050: 一个针对客户端的攻击,如Adobe 成 ...
- IOS学习基础
http://www.jikexueyuan.com/path/ios/ 界面优化 iOS界面绘图API.控件等知识. 1,绘制图片 2,画板实例 3, 1,UIView的setNeedsDispla ...
- python中的迭代器和生成器学习笔记总结
生成器就是一个在行为上和迭代器非常类似的对象. 是个对象! 迭代,顾名思意就是不停的代换的意思,迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果.每一次对过程的重复称为一次“迭代”,而 ...
- http://www.360doc.com/content/18/0406/16/15102180_743316618.shtml
http://www.360doc.com/content/18/0406/16/15102180_743316618.shtml
- 李白打酒|2014年蓝桥杯B组题解析第三题-fishers
李白打酒 话说大诗人李白,一生好饮.幸好他从不开车. 一天,他提着酒壶,从家里出来,酒壶中有酒2斗.他边走边唱: 无事街上走,提壶去打酒. 逢店加一倍,遇花喝一斗. 这一路上,他一共遇到店5次,遇到花 ...
- 【修改帐号信息】Eclipse中修改SVN用户名和密码方法
由于在svn 的界面中并没有为我们提供直接更换用户名密码的地方,所以一旦我们需要更换用户名的就需要自己想一些办法. 解决方案: 在Eclipse 使用SVN 的过程中大多数人往往习惯把访问SVN 的用 ...
- [JavaScript] - form表单转json的插件
jquery.serializejson.js 之前好像记录过,做项目又用到了再记下 在页面中引入js后就可以使用了 示例: //点击设置微信信息的form表单提交按钮后,执行wxConfig的con ...
- Nlog、elasticsearch、Kibana以及logstash在项目中的应用(二)
上一篇说如何搭建elk的环境(不清楚的可以看我的上一篇博客http://www.cnblogs.com/never-give-up-1015/p/5715904.html),现在来说一下如何用Nlog ...
- Ubuntu 14.04 python3.6 安装
参考 how-do-i-install-python-3-6-using-apt-get Ubuntu 14.04 python3.6 安装 sudo add-apt-repository ppa:j ...