系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

第3章 损失函数

3.0 损失函数概论

3.0.1 概念

在各种材料中经常看到的中英文词汇有:误差,偏差,Error,Cost,Loss,损失,代价......意思都差不多,在本书中,使用“损失函数”和“Loss Function”这两个词汇,具体的损失函数符号用J来表示,误差值用loss表示。

“损失”就是所有样本的“误差”的总和,亦即(m为样本数):

\[损失 = \sum^m_{i=1}误差_i\]

\[J = \sum_{i=1}^m loss\]

在黑盒子的例子中,我们如果说“某个样本的损失”是不对的,只能说“某个样本的误差”,因为样本是一个一个计算的。如果我们把神经网络的参数调整到完全满足独立样本的输出误差为0,通常会令其它样本的误差变得更大,这样作为误差之和的损失函数值,就会变得更大。所以,我们通常会在根据某个样本的误差调整权重后,计算一下整体样本的损失函数值,来判定网络是不是已经训练到了可接受的状态。

损失函数的作用

损失函数的作用,就是计算神经网络每次迭代的前向计算结果与真实值的差距,从而指导下一步的训练向正确的方向进行。

如何使用损失函数呢?具体步骤:

  1. 用随机值初始化前向计算公式的参数;
  2. 代入样本,计算输出的预测值;
  3. 用损失函数计算预测值和标签值(真实值)的误差;
  4. 根据损失函数的导数,沿梯度最小方向将误差回传,修正前向计算公式中的各个权重值;
  5. goto 2, 直到损失函数值达到一个满意的值就停止迭代。

3.0.2 机器学习常用损失函数

符号规则:a是预测值,y是样本标签值,J是损失函数值。

  • Gold Standard Loss,又称0-1误差
    \[
    loss=\begin{cases} 0 & a=y \\ 1 & a \ne y \end{cases}
    \]

  • 绝对值损失函数

\[
loss = |y-a|
\]

  • Hinge Loss,铰链/折页损失函数或最大边界损失函数,主要用于SVM(支持向量机)中

\[
loss=max(0,1-y \cdot a), y=\pm 1
\]

  • Log Loss,对数损失函数,又叫交叉熵损失函数(cross entropy error)

\[
loss = -\frac{1}{m} \sum_i^m y_i log(a_i) + (1-y_i)log(1-a_i) \qquad y_i \in \{0,1\}
\]

  • Squared Loss,均方差损失函数
    \[
    loss=\frac{1}{2m} \sum_i^m (a_i-y_i)^2
    \]

  • Exponential Loss,指数损失函数
    \[
    loss = \frac{1}{m}\sum_i^m e^{-(y_i \cdot a_i)}
    \]

3.0.3 损失函数图像理解

用二维函数图像理解单变量对损失函数的影响

图3-1 单变量的损失函数图

图3-1中,纵坐标是损失函数值,横坐标是变量。不断地改变变量的值,会造成损失函数值的上升或下降。而梯度下降算法会让我们沿着损失函数值下降的方向前进。

  1. 假设我们的初始位置在A点,\(x=x0\),损失函数值(纵坐标)较大,回传给网络做训练;
  2. 经过一次迭代后,我们移动到了B点,\(x=x1\),损失函数值也相应减小,再次回传重新训练;
  3. 以此节奏不断向损失函数的最低点靠近,经历了\(x2、x3、x4、x5\);
  4. 直到损失值达到可接受的程度,比如\(x5\)的位置,就停止训练。

用等高线图理解双变量对损失函数影响

图3-2 双变量的损失函数图

图3-2中,横坐标是一个变量\(w\),纵坐标是另一个变量\(b\)。两个变量的组合形成的损失函数值,在图中对应处于等高线上的唯一的一个坐标点。\(w、b\)所有的不同的值的组合会形成一个损失函数值的矩阵,我们把矩阵中具有相同(相近)损失函数值的点连接起来,可以形成一个不规则椭圆,其圆心位置,是损失值为0的位置,也是我们要逼近的目标。

这个椭圆如同平面地图的等高线,来表示的一个洼地,中心位置比边缘位置要低,通过对损失函数值的计算,对损失函数的求导,会带领我们沿着等高线形成的梯子一步步下降,无限逼近中心点。

3.0.4 神经网络中常用的损失函数

  • 均方差函数,主要用于回归

  • 交叉熵函数,主要用于分类

二者都是非负函数,极值在底部,用梯度下降法可以求解。

[ch03-00] 损失函数的更多相关文章

  1. Spark机器学习读书笔记-CH03

    3.1.获取数据: wget http://files.grouplens.org/datasets/movielens/ml-100k.zip 3.2.探索与可视化数据: In [3]: user_ ...

  2. tensorflow 自定义损失函数示例

    这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们 ...

  3. 李航《统计学习方法》CH03

    CH03 k近邻法 前言 章节目录 k近邻算法 k近邻模型 模型 距离度量 k值选择 分类决策规则 k近邻法的实现: KDTree 构造KDTree 搜索KDTree 导读 kNN是一种基本分类与回归 ...

  4. tensflow自定义损失函数

    tensflow 不仅支持经典的损失函数,还可以优化任意的自定义损失函数. 预测商品销量时,如果预测值比真实销量大,商家损失的是生产商品的成本:如果预测值比真实值小,损失的则是商品的利润. 比如如果一 ...

  5. 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)

    https://blog.csdn.net/u010976453/article/details/78488279 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f( ...

  6. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  7. 机器学习之路: tensorflow 自定义 损失函数

    git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf ...

  8. tensorflow:实战Google深度学习框架第四章01损失函数

    深度学习:两个重要特性:多层和非线性 线性模型:任意线性模型的组合都是线性模型,只通过线性变换任意层的全连接神经网络与单层神经网络没有区别. 激活函数:能够实现去线性化(神经元的输出通过一个非线性函数 ...

  9. [ch03-01] 均方差损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.1 均方差函数 MSE - Mean Square ...

  10. L1、L2损失函数、Huber损失函数

    L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 ...

随机推荐

  1. Redis(九)哨兵:Redis Sentinel

    Redis的主从复制模式下,一旦主节点由于故障不能提供服务,需要人工将从节点晋升为主节点,同时还要通知应用方更新主节点地址,对于很多应用场景这种故障处理的方式是无法接受的. Redis从2.8开始正式 ...

  2. django-URL重定向(八)

    HttpResponseRedirect()不常用 redirect(to,permanent=False,*args,**kwargs) to:指重定向的位置,可以是视图,也可以是url地址,也可以 ...

  3. 使用VS2013操作MYSQL8 (ADO.NET方式 & EF6)

    今天有时间测试了一下通过.net环境操作MYSQL数据库,测试过程及结果记录如下: 1.MYSQL安装 (1)我是从MYSQL官网下载的最新版,即MYSQL8.0,在MySql官网的下载页面,找到“M ...

  4. Python+requests+unittest+excel实现接口自动化测试框架(转

    一.框架结构:工程目录 二.Case文件设计三.基础包 base 3.1 封装get/post请求(runmethon.py) import requests import json class Ru ...

  5. 中文预训练模型ERNIE2.0模型下载及安装

    2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优 ...

  6. Java 生成在线二维码 以Base64返回前端、或者写入到本地磁盘

    思路 现阶段遇到这样一个问题,在原有的产品上加入线下优惠券模式,用户领取优惠券以后,获取到一个唯一的ID作为领取凭证,但是在线下用扫码枪进行扫码的时候,总不能让人手动输入吧 于是乎就想出了一个办法,后 ...

  7. CentOS生产环境无网络安装percona-xtrabackup2.4【RPM安装教程】

    Percona XtraBackup 8.0不支持对在MySQL 8.0之前的版本,Percona Server for MySQL或 Percona XtraDB Cluster中创建的数据库进行备 ...

  8. 调用微信js sdk

    场景:需要调用微信获取当前位置的借口. 途径:查看微信 https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1421141115 .后 ...

  9. 第三十五章 POSIX共享内存

    POSIX共享内存函数介绍 shm_open 功能: 用来创建或打开一个共享内存对象 原型: int shm_open(const char *name, int oflag, mode_t mode ...

  10. Matlab 在线使用 | 推荐

    Matlab 在线使用 | 推荐