描述

The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas (the site of the ACM Finals this year). This is the place where the astronauts are trained for Mission Seven Dwarfs, the next giant leap in space exploration. The Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum and bloggium. These minerals are important ingredients for certain revolutionary new medicines, but they are extremely rare on Earth. The aim of Mission Seven Dwarfs is to mine these minerals on Mars and bring them back to Earth.

The Mars Odyssey orbiter identified a rectangular area on the surface of
Mars that is rich in minerals. The area is divided into cells that form
a matrix of n rows and m columns, where the rows go from east to west
and the columns go from north to south. The orbiter determined the
amount of yeyenum and bloggium in each cell. The astronauts will build a
yeyenum refinement factory west of the rectangular area and a bloggium
factory to the north. Your task is to design the conveyor belt system
that will allow them to mine the largest amount of minerals.

There are two types of conveyor belts: the first moves minerals from
east to west, the second moves minerals from south to north. In each
cell you can build either type of conveyor belt, but you cannot build
both of them in the same cell. If two conveyor belts of the same type
are next to each other, then they can be connected. For example, the
bloggium mined at a cell can be transported to the bloggium refinement
factory via a series of south-north conveyor belts.

The minerals are very unstable, thus they have to be brought to the
factories on a straight path without any turns. This means that if there
is a south-north conveyor belt in a cell, but the cell north of it
contains an east-west conveyor belt, then any mineral transported on the
south-north conveyor beltwill be lost. The minerals mined in a
particular cell have to be put on a conveyor belt immediately, in the
same cell (thus they cannot start the transportation in an adjacent
cell). Furthermore, any bloggium transported to the yeyenum refinement
factory will be lost, and vice versa.

Your program has to design a conveyor belt system that maximizes the
total amount of minerals mined,i.e., the sum of the amount of yeyenum
transported to the yeyenum refinery and the amount of bloggium
transported to the bloggium refinery.

输入

The
input contains several blocks of test cases. Each case begins with a
line containing two integers: the number 1 ≤ n ≤ 500 of rows, and the
number 1 ≤ m ≤ 500 of columns. The next n lines describe the amount of
yeyenum that can be found in the cells. Each of these n lines contains m
integers. The first line corresponds to the northernmost row; the first
integer of each line corresponds to the westernmost cell of the row.
The integers are between 0 and 1000. The next n lines describe in a
similar fashion theamount of bloggium found in the cells.

The input is terminated by a block with n = m = 0.

输出

For each test case, you have to output a single integer on a separate line: the maximum amount of mineralsthat can be mined.

样例输入

4 4
0 0 10 9
1 3 10 0
4 2 1 3
1 1 20 0
10 0 0 0
1 1 1 30
0 0 5 5
5 10 10 10
0 0

样例输出

98

提示

Huge input file, 'scanf' recommended to avoid TLE.

题意

N*M的方格,每个方格里有A和B矿石,A矿石只能往左运输,B只能往上,每个方格只能放最多1个传送带,问你最大能得到多少矿石

题解

dp[i][j]代表从(1,1)->(n,m)所得到的最大矿石

可以知道dp[i][j]=max(dp[i-1][j]+a[i][j],dp[i][j-1]+b[i][j]);

dp[i-1][j]+a[i][j];代表(1,1)->(i-1,j)的最大值,加上当前点左边的全部左移

dp[i][j-1]+a[i][j];代表(1,1)->(i,j-1)的最大值,加上当前点上边的全部上移

初始值i=0或j=0,dp[i][j]=0

代码

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=;
int n,m;
int dp[N][N],a[][N][N];
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
for(int k=;k<;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&a[k][i][j]);
if(!k)a[][i][j]+=a[][i][j-];
else a[][i][j]+=a[][i-][j];
}
memset(dp,,sizeof dp);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j]=max(dp[i-][j]+a[][i][j],dp[i][j-]+a[][i][j]);
printf("%d\n",dp[n][m]);
}
return ;
}

TZOJ 1800 Martian Mining(二维dp)的更多相关文章

  1. 洛谷p1732 活蹦乱跳的香穗子 二维DP

    今天不BB了,直接帖原题吧  地址>>https://www.luogu.org/problem/show?pid=1732<< 题目描述 香穗子在田野上调蘑菇!她跳啊跳,发现 ...

  2. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  3. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  4. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

  5. 关于二维DP————站上巨人的肩膀

    意匠惨淡经营中ing, 语不惊人死不休........ 前几天学了DP,做了个简单的整理,记录了关于DP的一些概念之类的,今天记录一下刚学的一个类型 ----关于二维DP 那建立二维数组主要是干嘛用的 ...

  6. BZOJ 2748: [HAOI2012]音量调节【二维dp,枚举】

    2748: [HAOI2012]音量调节 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2010  Solved: 1260[Submit][Statu ...

  7. To the Max 二维dp(一维的变形)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  8. POJ 1661 Help Jimmy(二维DP)

    题目链接:http://poj.org/problem?id=1661 题目大意: 如图包括多个长度和高度各不相同的平台.地面是最低的平台,高度为零,长度无限. Jimmy老鼠在时刻0从高于所有平台的 ...

  9. SGU104 二维dp

    大致题意: n个东西放在(1.2.3...m)个容器中,先放的必需在后方的左边.a[i][j]表示i号物品放在j容器所得 的价值,求最大价值. 几乎是刚刚开始接触动态规划题,开始我这样想 每个东西一件 ...

随机推荐

  1. 我要带徒弟学写JAVA架构,引路架构师之路(Jeecg开源社区)

    带徒弟学JAVA架构(Jeecg社区)      Java程序员如何打破工作2,3年的瓶颈问题,如何更上一层楼?      太多的巧合,让我接触到了开源,通过JEECG与很多朋友交流后,让我有了帮助别 ...

  2. Tomcat命令

    如果原始内存不够用经常内存溢出,可以在catalina.bat中设置: 电脑2G内存的情况 :set JAVA_OPTS='-server -Xms1024m -Xmx1536m -XX:PermSi ...

  3. 爬虫--urllib模块

    一.urllib库 概念:urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urll ...

  4. 26个Jquery使用小技巧(转)

    下面列出了一些Jquery使用技巧.比如有禁止右键点击.隐藏搜索文本框文字.在新窗口中打开链接.检测浏览器.预加载图片.页面样式切换.所有列等 高.动态控制页面字体大小.获得鼠标指针的X值Y值.验证元 ...

  5. java序列化问题

    今天无意中看到了     redistemplet封装的类中,出现了序列化的字眼 ,了解下序列化的知识 1.什么是序列化 我们把变量从内存中变成可存储或传输的过程称之为序列化,(java中一般是用来保 ...

  6. jquery接触初级-----juqery 动画函数

    1. window.onload(), 一次只能保存对一个函数的引用:如果多次调用,他会自动用后面的函数覆盖前面的函数 2.$(document).ready(); 会在现有行为上追加新的行为,这些函 ...

  7. Zabbix实现自动发现端口并监控

    1.新建客户端需要的脚本 # vim discovertcpport.sh #!/bin/bash portarray=(`sudo netstat -tnlp|egrep -i "$1&q ...

  8. MYSQL如何解决幻读

    第一部分 首先要了解下mysql数据库的事务特征之一隔离级别: READ UNCOMMITTED(未提交读): 在READUNCOMMITTED级别,事务中的修改,即使没有提交,对其他事务也都是可见的 ...

  9. 三种方式监听NGUI的事件方法

    NGUI研究院之三种方式监听NGUI的事件方法(七) NGUI事件的种类很多,比如点击.双击.拖动.滑动等等,他们处理事件的原理几乎万全一样,本文只用按钮来举例. 1.直接监听事件 把下面脚本直接绑定 ...

  10. 通过日志恢复SQL Server的历史数据

    通过日志恢复SQL Server的历史数据 Posted on 2008-11-14 21:47 代码乱了 阅读(4658) 评论(10)  编辑 收藏 园子里前段时间发过一篇通过日志恢复MSSQL数 ...