Matplotlib刻度是用于在绘图中表示数据大小的工具。

刻度是坐标轴上的数字或标签,用于指示数据的大小或值,
通常以整数或小数表示,具体取决于坐标轴的类型和限制。

1. 主次刻度

默认的绘制时,坐标轴只有默认的主要刻度,如下所示:

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
#X轴的主要和次要刻度
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.xaxis.set_minor_locator(MultipleLocator(2)) #Y轴的主要和次要刻度
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10)) ax.plot(x, y)


上面的示例中,
设置了X轴的主要刻度间隔20,次要刻度间隔2,也就是每2个主要刻度之间有10个次要刻度
设置了Y轴的主要刻度间隔50,次要刻度间隔10,也就是每2个主要刻度之间有5个次要刻度

次要刻度就是上面图中主要刻度之间稍短点的线。

2. 刻度样式

刻度的样式非常灵活,常见的有以下几种设置。

2.1. 隐藏刻度

隐藏刻度,只保留图形,这在做某些示意图的时候可能会用到。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) #隐藏刻度
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator()) ax.plot(x, y, color='g')

2.2. 密度

密度是指刻度的间隔,如果图比较小,可以设置间隔大一些,反之则设置小一些。

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) rows, cols = 2, 2
grid = plt.GridSpec(rows, cols) ax = plt.subplot(grid[0, 0])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.yaxis.set_major_locator(MultipleLocator(50)) ax = plt.subplot(grid[1, :])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(20))


上例中,根据图形的大小,我们设置了刻度的不同密度

2.3. 颜色,大小,旋转

为了突出某些刻度值,有时候会需要修改那些刻度值的颜色和大小。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(10)) obj = ax.get_xticklabels()[2]
obj.set_size(20)
obj.set_color("red") ax.plot(x, y, color='g')


上面示例中,X轴刻度10放大并且改成了红色

刻度的旋转一般用在刻度内容比较长的情况,比如下面的示例:

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.plot(x, y, color="g")


由于X轴的刻度是日期,因为太长,所以会挤在一起,显示不清。
这时可以调整X轴刻度的角度,避免重合在一起。

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(rotation=45) # 旋转45度 ax.plot(x, y, color="g")

2.4. latex格式

Matplotlib的刻度还支持latex格式,可以显示一些特殊的字符,比如圆周率π
直接显示时:

x = np.array([0, np.pi / 6, np.pi / 4, np.pi/3, np.pi / 2])
x = np.round(x, 2)
y = np.sin(x) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(labels=x, ticks=x)
ax.plot(x, y)


X轴的刻度显示实际的值。
调整为 latex 格式来显示:(调整 plt.xticks() 这个函数)

plt.xticks(labels=[
"0", "$\pi/6$", "$\pi/4$", "$\pi/3$", "$\pi/2$"
], ticks=x)


X轴的刻度中显示圆周率π,更易于阅读和理解。

3. 总结回顾

与之前介绍的画布子图坐标轴相比,刻度是设置最多也是最复杂的一个容器。
刻度的主要作用是帮助数据可视化更加清晰和易于理解,基于此,本篇主要介绍了:

  1. 主次刻度
  2. 刻度样式,包括是否显示刻度,刻度的密度,颜色,大小,角度以及latex公式的支持。

【matplotlib基础】--刻度的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  3. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  4. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  5. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  6. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  7. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  8. 【Matplotlib】 刻度设置(2)

    Tick locating and formatting 该模块包括许多类以支持完整的刻度位置和格式的配置.尽管 locators 与主刻度或小刻度没有关系,他们经由 Axis 类使用来支持主刻度和小 ...

  9. Pandas与Matplotlib基础

    pandas是Python中开源的,高性能的用于数据分析的库.其中包含了很多可用的数据结构及功能,各种结构支持相互转换,并且支持读取.保存数据.结合matplotlib库,可以将数据已图表的形式可视化 ...

  10. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

随机推荐

  1. 【从0开始编写webserver·基础篇#02】服务器的核心---I/O处理单元和任务类

    I/O处理单元和任务类 前面写了线程池,那么现在要考虑如何去使用该线程池了 注意,到目前为止,我们还是在解决web服务器的I/O处理单元 即负责处理客户连接,读写网络数据的部分 线程池属于 Web 服 ...

  2. R 语言绘制环状热图

    作者:佳名来源:简书 - R 语言文集 1. 读取并处理基因表达数据 这是我的基因表达量数据: 图 Fig 1 > myfiles <- list.files(pattern = &quo ...

  3. ASP.NET Core 6框架揭秘实例演示[38]:两种不同的限流策略

    承载ASP.NET应用的服务器资源总是有限的,短时间内涌入过多的请求可能会瞬间耗尽可用资源并导致宕机.为了解决这个问题,我们需要在服务端设置一个阀门将并发处理的请求数量限制在一个可控的范围,即使会导致 ...

  4. 【技术积累】Git中的基础知识【一】

    Git是什么?有什么特点? Git是一个分布式版本控制系统,常用于软件开发中的源代码管理.它最初由Linux开发者Linus Torvalds创建,旨在管理Linux内核的开发. Git具有以下特点: ...

  5. C++ 核心指南之资源管理(上)

    C++ 核心指南(C++ Core Guidelines)是由 Bjarne Stroustrup.Herb Sutter 等顶尖 C++ 专家创建的一份 C++ 指南.规则及最佳实践.旨在帮助大家正 ...

  6. k8s驱逐篇(7)-kube-controller-manager驱逐-taintManager源码分析

    概述 taintManager的主要功能为:当某个node被打上NoExecute污点后,其上面的pod如果不能容忍该污点,则taintManager将会驱逐这些pod,而新建的pod也需要容忍该污点 ...

  7. Batch Normalization及其反向传播及bn层的作用

    笔记: Batch Normalization及其反向传播 重点: 在神经网络中,网络是分层的,可以把每一层视为一个单独的分类器,将一个网络看成分类器的串联.这就意味着,在训练过程中,随着某一层分类器 ...

  8. 即构SDK支持对焦、变焦、曝光调整,让直播细节清晰呈现

    对焦.变焦.曝光调整,摄影爱好者对这三个术语一定不陌生. 对焦是指通过相机对焦机构变动物距和相距的位置,使被拍物成像清晰的过程:变焦指的是在望远拍摄时放大远方物体,并使之清晰成像 :曝光调整是一种曝光 ...

  9. 如何使用C#中的Lambda表达式操作Redis Hash结构,简化缓存中对象属性的读写操作

    Redis是一个开源的.高性能的.基于内存的键值数据库,它支持多种数据结构,如字符串.列表.集合.散列.有序集合等.其中,Redis的散列(Hash)结构是一个常用的结构,今天跟大家分享一个我的日常操 ...

  10. 2021-7-11 Vue的计算属性和侦听器

    计算属性是为了让页面显示更加简洁,基于data数据进行处理的方法,以下为实例 <!DOCTYPE html> <html> <head> <title> ...