Matplotlib刻度是用于在绘图中表示数据大小的工具。

刻度是坐标轴上的数字或标签,用于指示数据的大小或值,
通常以整数或小数表示,具体取决于坐标轴的类型和限制。

1. 主次刻度

默认的绘制时,坐标轴只有默认的主要刻度,如下所示:

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
#X轴的主要和次要刻度
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.xaxis.set_minor_locator(MultipleLocator(2)) #Y轴的主要和次要刻度
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10)) ax.plot(x, y)


上面的示例中,
设置了X轴的主要刻度间隔20,次要刻度间隔2,也就是每2个主要刻度之间有10个次要刻度
设置了Y轴的主要刻度间隔50,次要刻度间隔10,也就是每2个主要刻度之间有5个次要刻度

次要刻度就是上面图中主要刻度之间稍短点的线。

2. 刻度样式

刻度的样式非常灵活,常见的有以下几种设置。

2.1. 隐藏刻度

隐藏刻度,只保留图形,这在做某些示意图的时候可能会用到。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) #隐藏刻度
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator()) ax.plot(x, y, color='g')

2.2. 密度

密度是指刻度的间隔,如果图比较小,可以设置间隔大一些,反之则设置小一些。

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) rows, cols = 2, 2
grid = plt.GridSpec(rows, cols) ax = plt.subplot(grid[0, 0])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.yaxis.set_major_locator(MultipleLocator(50)) ax = plt.subplot(grid[1, :])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(20))


上例中,根据图形的大小,我们设置了刻度的不同密度

2.3. 颜色,大小,旋转

为了突出某些刻度值,有时候会需要修改那些刻度值的颜色和大小。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(10)) obj = ax.get_xticklabels()[2]
obj.set_size(20)
obj.set_color("red") ax.plot(x, y, color='g')


上面示例中,X轴刻度10放大并且改成了红色

刻度的旋转一般用在刻度内容比较长的情况,比如下面的示例:

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.plot(x, y, color="g")


由于X轴的刻度是日期,因为太长,所以会挤在一起,显示不清。
这时可以调整X轴刻度的角度,避免重合在一起。

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(rotation=45) # 旋转45度 ax.plot(x, y, color="g")

2.4. latex格式

Matplotlib的刻度还支持latex格式,可以显示一些特殊的字符,比如圆周率π
直接显示时:

x = np.array([0, np.pi / 6, np.pi / 4, np.pi/3, np.pi / 2])
x = np.round(x, 2)
y = np.sin(x) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(labels=x, ticks=x)
ax.plot(x, y)


X轴的刻度显示实际的值。
调整为 latex 格式来显示:(调整 plt.xticks() 这个函数)

plt.xticks(labels=[
"0", "$\pi/6$", "$\pi/4$", "$\pi/3$", "$\pi/2$"
], ticks=x)


X轴的刻度中显示圆周率π,更易于阅读和理解。

3. 总结回顾

与之前介绍的画布子图坐标轴相比,刻度是设置最多也是最复杂的一个容器。
刻度的主要作用是帮助数据可视化更加清晰和易于理解,基于此,本篇主要介绍了:

  1. 主次刻度
  2. 刻度样式,包括是否显示刻度,刻度的密度,颜色,大小,角度以及latex公式的支持。

【matplotlib基础】--刻度的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  3. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  4. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  5. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  6. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  7. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  8. 【Matplotlib】 刻度设置(2)

    Tick locating and formatting 该模块包括许多类以支持完整的刻度位置和格式的配置.尽管 locators 与主刻度或小刻度没有关系,他们经由 Axis 类使用来支持主刻度和小 ...

  9. Pandas与Matplotlib基础

    pandas是Python中开源的,高性能的用于数据分析的库.其中包含了很多可用的数据结构及功能,各种结构支持相互转换,并且支持读取.保存数据.结合matplotlib库,可以将数据已图表的形式可视化 ...

  10. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

随机推荐

  1. es 笔记二之基础查询

    本文首发于公众号:Hunter后端 原文链接:es笔记二之基础查询 这一篇笔记介绍 es 的基础查询. 基础查询包括很多,比如排序,类似数据库 limit 的操作,like 操作,与或非等,对于这些操 ...

  2. 巧用OpenSSH进行域内权限维持

    最近在Windows服务器上安装OpenSSH,意外发现了一个很有意思的技巧,可用来做域内权限维持,废话不多说,直接上步骤. 01.利用方式 (1)在已经获得权限的Windows服务器上,使用msie ...

  3. Java配置线程池

    一.Java配置线程池 1.线程池分类.其他 1.1.分类 IO密集型 和 CPU密集型 任务的特点不同,因此针对不同类型的任务,选择不同类型的线程池可以获得更好的性能表现. 1.1. IO密集型任务 ...

  4. 计算机网络 VRRP和DHCP

    目录 一.vrrp概念 二.vrrp工作过程 三.vrrp优先级 四.vrrp实验 五.DHCP概念 六.DHCP工作过程 七.DHCP实验 一.vrrp概念 概念:称虚拟路由器冗余协议,当网关路由器 ...

  5. Python基础 - 算数运算符

    算数运算符   运算符 描述 实例 + 加 - 两个对象相加 a + b 输出结果 30 - 减 - 得到负数或是一个数减去另一个数 a - b 输出结果 -10 * 乘 - 两个数相乘或是返回一个被 ...

  6. 【Python&目标识别】调用百度智能云API实现植被识别

           ​百度智能云于2015年正式对外开放运营,以"云智一体"为核心赋能千行百业,致力于为企业和开发者提供全球领先的人工智能.大数据和云计算服务及易用的开发工具.凭借先进的 ...

  7. CKS 考试题整理 (18)-TLS 安全配置

    Task 通过 TLS 加强 kube-apiserver 安全配置,要求 kube-apiserver 除了 VersionTLS13 及以上的版本可以使用,其他版本都不允许使用. 密码套件(Cip ...

  8. Prompt 手册——gpt-best-practices

    本文链接:https://www.cnblogs.com/wanger-sjtu/p/17470388.html 本文是 OpenAI gpt-best-practices 对如何使用GPT的Prom ...

  9. java调用WebService(未完成)记录篇

    背景: 因工作需要和一个Sap相关系统以WebService的方式进行接口联调,之前仅听过这种技术,但并没有实操过,所以将本次开发相关的踩坑进行记录 通过一个实例来认识webservice 服务端 首 ...

  10. 深度解析SpringBoot内嵌Web容器

    你好,我是刘牌! 前言 今天分享一个SpringBoot的内嵌Web容器,在SpringBoot还没有出现时,我们使用Java开发了Web项目,需要将其部署到Tomcat下面,需要配置很多xml文件, ...