Matplotlib刻度是用于在绘图中表示数据大小的工具。

刻度是坐标轴上的数字或标签,用于指示数据的大小或值,
通常以整数或小数表示,具体取决于坐标轴的类型和限制。

1. 主次刻度

默认的绘制时,坐标轴只有默认的主要刻度,如下所示:

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
#X轴的主要和次要刻度
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.xaxis.set_minor_locator(MultipleLocator(2)) #Y轴的主要和次要刻度
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10)) ax.plot(x, y)


上面的示例中,
设置了X轴的主要刻度间隔20,次要刻度间隔2,也就是每2个主要刻度之间有10个次要刻度
设置了Y轴的主要刻度间隔50,次要刻度间隔10,也就是每2个主要刻度之间有5个次要刻度

次要刻度就是上面图中主要刻度之间稍短点的线。

2. 刻度样式

刻度的样式非常灵活,常见的有以下几种设置。

2.1. 隐藏刻度

隐藏刻度,只保留图形,这在做某些示意图的时候可能会用到。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) #隐藏刻度
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator()) ax.plot(x, y, color='g')

2.2. 密度

密度是指刻度的间隔,如果图比较小,可以设置间隔大一些,反之则设置小一些。

from matplotlib.ticker import MultipleLocator 

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) rows, cols = 2, 2
grid = plt.GridSpec(rows, cols) ax = plt.subplot(grid[0, 0])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.yaxis.set_major_locator(MultipleLocator(50)) ax = plt.subplot(grid[1, :])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(20))


上例中,根据图形的大小,我们设置了刻度的不同密度

2.3. 颜色,大小,旋转

为了突出某些刻度值,有时候会需要修改那些刻度值的颜色和大小。

x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(10)) obj = ax.get_xticklabels()[2]
obj.set_size(20)
obj.set_color("red") ax.plot(x, y, color='g')


上面示例中,X轴刻度10放大并且改成了红色

刻度的旋转一般用在刻度内容比较长的情况,比如下面的示例:

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.plot(x, y, color="g")


由于X轴的刻度是日期,因为太长,所以会挤在一起,显示不清。
这时可以调整X轴刻度的角度,避免重合在一起。

x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(rotation=45) # 旋转45度 ax.plot(x, y, color="g")

2.4. latex格式

Matplotlib的刻度还支持latex格式,可以显示一些特殊的字符,比如圆周率π
直接显示时:

x = np.array([0, np.pi / 6, np.pi / 4, np.pi/3, np.pi / 2])
x = np.round(x, 2)
y = np.sin(x) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(labels=x, ticks=x)
ax.plot(x, y)


X轴的刻度显示实际的值。
调整为 latex 格式来显示:(调整 plt.xticks() 这个函数)

plt.xticks(labels=[
"0", "$\pi/6$", "$\pi/4$", "$\pi/3$", "$\pi/2$"
], ticks=x)


X轴的刻度中显示圆周率π,更易于阅读和理解。

3. 总结回顾

与之前介绍的画布子图坐标轴相比,刻度是设置最多也是最复杂的一个容器。
刻度的主要作用是帮助数据可视化更加清晰和易于理解,基于此,本篇主要介绍了:

  1. 主次刻度
  2. 刻度样式,包括是否显示刻度,刻度的密度,颜色,大小,角度以及latex公式的支持。

【matplotlib基础】--刻度的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  3. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  4. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  5. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  6. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  7. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

  8. 【Matplotlib】 刻度设置(2)

    Tick locating and formatting 该模块包括许多类以支持完整的刻度位置和格式的配置.尽管 locators 与主刻度或小刻度没有关系,他们经由 Axis 类使用来支持主刻度和小 ...

  9. Pandas与Matplotlib基础

    pandas是Python中开源的,高性能的用于数据分析的库.其中包含了很多可用的数据结构及功能,各种结构支持相互转换,并且支持读取.保存数据.结合matplotlib库,可以将数据已图表的形式可视化 ...

  10. 第二周 数据分析之展示 Matplotlib基础绘图函数实例

    Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...

随机推荐

  1. mac部署flutter时执行brew update无反应

    找来找去还是镜像的问题 1.替换brew 镜像 git remote set-url origin https://mirrors.ustc.edu.cn/ew.git 2.替换homebrew-co ...

  2. 【原创】浅谈EtherCAT主站EOE(上)-EOE网络

    这篇文章的标题虽然是关于EtherCAT EOE,但其实主要内容是关于整个EOE网络结构,属于计算机网络原理.而EtherCAT EoE只是简单介绍,并不是文章的重点.需要注意的是,我们的描述主要基于 ...

  3. Qt+QtWebApp开发笔记(四):http服务器使用Session和Cookie实现用户密码登录和注销功能

    前言   前面实现了基础的跳转,那么动态交互中登录是常用功能.  本篇实现一个动态交互的简单登录和注销功能,在Qt中使用Session和Cookie技术.   Demo    下载地址   链接:ht ...

  4. 《数据结构》之栈和堆结构及JVM简析

    导言: 在数据结构中,我们第一了解到了栈或堆栈,它的结构特点是什么呢?先进后出,它的特点有什么用呢?我们在哪里可以使用到栈结构,栈结构那么简单,使用这么久了为什么不用其它结构替代? 一.程序在内存中的 ...

  5. Application of Permutation and Combination

    Reference https://www.shuxuele.com/combinatorics/combinations-permutations.html Online Tool https:// ...

  6. 2023-06-16:给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数。 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」。 所谓「表现良好的时间

    2023-06-16:给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数. 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」. 所谓「表现良好的时间 ...

  7. 一致性hash算法原理及实践

    大家好,我是蓝胖子,想起之前学算法的时候,常常只知表面,不得精髓,这个算法到底有哪些应用场景,如何应用在工作中,后来随着工作的深入,一些不懂的问题才慢慢被抽丝剥茧分解出来. 今天我们就来看看工作和面试 ...

  8. 前端vue 宫格组件提供常见九宫格菜单组件,扩充性好,可切换九宫格 十二宫格 十五宫格

    快速实现vue uni-app宫格组件提供常见九宫格菜单组件,扩充性好,可切换九宫格 十二宫格 十五宫格; 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net. ...

  9. 前端Vue自定义加载中loading加载结束end组件 可用于分页展示 页面加载请求

    前端Vue自定义加载中loading加载结束end组件 可用于分页展示 页面加载请求, 请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=132 ...

  10. selenium元素定位防踩坑---StaleElementReferenceException解决方法

    1.异常原因 执行调试报错:selenium.common.exceptions.StaleElementReferenceException: Message: stale element refe ...