【matplotlib基础】--刻度
Matplotlib中刻度是用于在绘图中表示数据大小的工具。
刻度是坐标轴上的数字或标签,用于指示数据的大小或值,
通常以整数或小数表示,具体取决于坐标轴的类型和限制。
1. 主次刻度
默认的绘制时,坐标轴只有默认的主要刻度,如下所示:
from matplotlib.ticker import MultipleLocator
x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
#X轴的主要和次要刻度
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.xaxis.set_minor_locator(MultipleLocator(2))
#Y轴的主要和次要刻度
ax.yaxis.set_major_locator(MultipleLocator(50))
ax.yaxis.set_minor_locator(MultipleLocator(10))
ax.plot(x, y)

上面的示例中,
设置了X轴的主要刻度间隔20,次要刻度间隔2,也就是每2个主要刻度之间有10个次要刻度。
设置了Y轴的主要刻度间隔50,次要刻度间隔10,也就是每2个主要刻度之间有5个次要刻度。
次要刻度就是上面图中主要刻度之间稍短点的线。
2. 刻度样式
刻度的样式非常灵活,常见的有以下几种设置。
2.1. 隐藏刻度
隐藏刻度,只保留图形,这在做某些示意图的时候可能会用到。
x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
#隐藏刻度
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
ax.plot(x, y, color='g')

2.2. 密度
密度是指刻度的间隔,如果图比较小,可以设置间隔大一些,反之则设置小一些。
from matplotlib.ticker import MultipleLocator
x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100)
rows, cols = 2, 2
grid = plt.GridSpec(rows, cols)
ax = plt.subplot(grid[0, 0])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(20))
ax.yaxis.set_major_locator(MultipleLocator(50))
ax = plt.subplot(grid[1, :])
ax.plot(x, y)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(20))

上例中,根据图形的大小,我们设置了刻度的不同密度。
2.3. 颜色,大小,旋转
为了突出某些刻度值,有时候会需要修改那些刻度值的颜色和大小。
x = np.array(range(0, 100))
y = np.random.randint(100, 200, 100)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.xaxis.set_major_locator(MultipleLocator(10))
obj = ax.get_xticklabels()[2]
obj.set_size(20)
obj.set_color("red")
ax.plot(x, y, color='g')

上面示例中,X轴刻度10被放大并且改成了红色。
刻度的旋转一般用在刻度内容比较长的情况,比如下面的示例:
x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y, color="g")

由于X轴的刻度是日期,因为太长,所以会挤在一起,显示不清。
这时可以调整X轴刻度的角度,避免重合在一起。
x = np.array(
[
"2022-01-01",
"2022-02-01",
"2022-03-01",
"2022-04-01",
"2022-05-01",
"2022-06-01",
"2022-07-01",
"2022-08-01",
"2022-09-01",
"2022-10-01",
]
)
y = np.random.randint(100, 200, 10)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(rotation=45) # 旋转45度
ax.plot(x, y, color="g")

2.4. latex格式
Matplotlib的刻度还支持latex格式,可以显示一些特殊的字符,比如圆周率π。
直接显示时:
x = np.array([0, np.pi / 6, np.pi / 4, np.pi/3, np.pi / 2])
x = np.round(x, 2)
y = np.sin(x)
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.xticks(labels=x, ticks=x)
ax.plot(x, y)

X轴的刻度显示实际的值。
调整为 latex 格式来显示:(调整 plt.xticks() 这个函数)
plt.xticks(labels=[
"0", "$\pi/6$", "$\pi/4$", "$\pi/3$", "$\pi/2$"
], ticks=x)

X轴的刻度中显示圆周率π,更易于阅读和理解。
3. 总结回顾
与之前介绍的画布,子图和坐标轴相比,刻度是设置最多也是最复杂的一个容器。
刻度的主要作用是帮助数据可视化更加清晰和易于理解,基于此,本篇主要介绍了:
- 主次刻度
- 刻度样式,包括是否显示刻度,刻度的密度,颜色,大小,角度以及
latex公式的支持。
【matplotlib基础】--刻度的更多相关文章
- Matplotlib基础知识
Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...
- Matplotlib基础使用
matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...
- 数据分析与展示——Matplotlib基础绘图函数示例
Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...
- Matplotlib基础图形之散点图
Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...
- matplotlib基础
Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...
- 模块简介与matplotlib基础
模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...
- [笔记]SciPy、Matplotlib基础操作
NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...
- 【Matplotlib】 刻度设置(2)
Tick locating and formatting 该模块包括许多类以支持完整的刻度位置和格式的配置.尽管 locators 与主刻度或小刻度没有关系,他们经由 Axis 类使用来支持主刻度和小 ...
- Pandas与Matplotlib基础
pandas是Python中开源的,高性能的用于数据分析的库.其中包含了很多可用的数据结构及功能,各种结构支持相互转换,并且支持读取.保存数据.结合matplotlib库,可以将数据已图表的形式可视化 ...
- 第二周 数据分析之展示 Matplotlib基础绘图函数实例
Pyplot基础图表函数 Pyplot饼图的绘制: Pyplot直方图的绘制: Pyplot极坐标图的绘制: Pyplot散点图的绘制: 单元小结: import numpy as np import ...
随机推荐
- mac部署flutter时执行brew update无反应
找来找去还是镜像的问题 1.替换brew 镜像 git remote set-url origin https://mirrors.ustc.edu.cn/ew.git 2.替换homebrew-co ...
- 【原创】浅谈EtherCAT主站EOE(上)-EOE网络
这篇文章的标题虽然是关于EtherCAT EOE,但其实主要内容是关于整个EOE网络结构,属于计算机网络原理.而EtherCAT EoE只是简单介绍,并不是文章的重点.需要注意的是,我们的描述主要基于 ...
- Qt+QtWebApp开发笔记(四):http服务器使用Session和Cookie实现用户密码登录和注销功能
前言 前面实现了基础的跳转,那么动态交互中登录是常用功能. 本篇实现一个动态交互的简单登录和注销功能,在Qt中使用Session和Cookie技术. Demo 下载地址 链接:ht ...
- 《数据结构》之栈和堆结构及JVM简析
导言: 在数据结构中,我们第一了解到了栈或堆栈,它的结构特点是什么呢?先进后出,它的特点有什么用呢?我们在哪里可以使用到栈结构,栈结构那么简单,使用这么久了为什么不用其它结构替代? 一.程序在内存中的 ...
- Application of Permutation and Combination
Reference https://www.shuxuele.com/combinatorics/combinations-permutations.html Online Tool https:// ...
- 2023-06-16:给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数。 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」。 所谓「表现良好的时间
2023-06-16:给你一份工作时间表 hours,上面记录着某一位员工每天的工作小时数. 我们认为当员工一天中的工作小时数大于 8 小时的时候,那么这一天就是「劳累的一天」. 所谓「表现良好的时间 ...
- 一致性hash算法原理及实践
大家好,我是蓝胖子,想起之前学算法的时候,常常只知表面,不得精髓,这个算法到底有哪些应用场景,如何应用在工作中,后来随着工作的深入,一些不懂的问题才慢慢被抽丝剥茧分解出来. 今天我们就来看看工作和面试 ...
- 前端vue 宫格组件提供常见九宫格菜单组件,扩充性好,可切换九宫格 十二宫格 十五宫格
快速实现vue uni-app宫格组件提供常见九宫格菜单组件,扩充性好,可切换九宫格 十二宫格 十五宫格; 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net. ...
- 前端Vue自定义加载中loading加载结束end组件 可用于分页展示 页面加载请求
前端Vue自定义加载中loading加载结束end组件 可用于分页展示 页面加载请求, 请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=132 ...
- selenium元素定位防踩坑---StaleElementReferenceException解决方法
1.异常原因 执行调试报错:selenium.common.exceptions.StaleElementReferenceException: Message: stale element refe ...