Problem Statement

There is a grid with $N$ rows and $M$ columns. The square at the $i$-th row from the top and the $j$-th column from the left contains the integer $A_{i,j}$.

Here, the squares contain $M$ occurrences of each of $1,\ldots,N$, for a total of $NM$ integers.

You perform the following operations to swap the numbers written on the squares.

  • For $i=1,\ldots,N$ in this order, do the following.
    • Freely rearrange the numbers written in the $i$-th row. That is, freely choose a permutation $P=(P_{1},\ldots,P_{M})$ of $1,\ldots,M$, and replace $A_{i,1},\ldots,A_{i,M}$ with $A_{i,P_{1}},\ldots,A_{i,P_{M}}$ simultaneously.

Your goal is to perform the operations so that each column contains each of $1,\ldots,N$ once. Determine if this is possible, and if so, print such a resulting grid.

盲猜没有无解。

一列一列处理,每次算出一列。而某一列可以建出二分图计算。如果第 \(i\) 行存在数 \(j\) 就从左部 \(i\) 向右部 \(j\) 连一条边,问题变为找一个匹配,匈牙利即可(为什么大家都Dinic 的)

现在要证明不存在无解情况,也就是不存在某一时刻二分图不存在完美匹配,转成Hall 定理的话,某 \(k\) 行出现过的不同的数一定超过 \(k\),设剩下 \(m\) 列没处理,那么每种数最多出现 \(m\) 次, \(k\) 行中共有 \(km\) 个数,所以至少会有 \(k\) 个不同的数,二分图一定存在完美匹配。

#include<bits/stdc++.h>
using namespace std;
const int N=4e5+5;
int n,m,a,b,c,vs[N],st[N],tp,idx,dfn[N],low[N];
struct graph{
int hd[N],e_num;
struct edge{
int v,nxt;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
e[++e_num]=(edge){u,hd[v]};
hd[v]=e_num;
}
}g,h;
int read()
{
int s=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
void tarjan(int x)
{
dfn[x]=low[x]=++idx;
st[++tp]=x;
for(int i=g.hd[x];i;i=g.e[i].nxt)
{
int v=g.e[i].v;
if(!dfn[v])
{
tarjan(v);
low[x]=min(low[x],low[v]);
if(low[v]==dfn[x])
{
++n;
while(st[tp]^v)
h.add_edge(n,st[tp--]);
h.add_edge(n,st[tp--]);
h.add_edge(x,n);
}
}
else
low[x]=min(low[x],dfn[v]);
}
}
void dfs(int x,int y)
{
st[++tp]=x;
if(x==c)
{
for(int i=1;i<=tp;i++)
vs[st[i]]=1;
return;
}
for(int i=h.hd[x];i;i=h.e[i].nxt)
if(h.e[i].v^y)
dfs(h.e[i].v,x);
--tp;
}
int main()
{
n=read(),m=read(),a=read(),b=read(),c=read();
for(int i=1,u,v;i<=m;i++)
g.add_edge(read(),read());
tarjan(a);
dfs(a,0);
for(int i=h.hd[b];i;i=h.e[i].nxt)
if(vs[h.e[i].v])
return puts("Yes"),0;
puts("No");
}

[ABC317G] Rearranging的更多相关文章

  1. Codeforces Round 56-B. Letters Rearranging(思维)

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  2. [AT2306]Rearranging(拓扑序)

    [AT2306]Rearranging(拓扑序) 只有luogu 题面(luogu): 有一个$n$个数组成的序列$a_{i}$. 高桥君会把整个序列任意排列,然后青木君可以选择两个相邻的互质的数交换 ...

  3. 【思路】Aizu - 1367 - Rearranging a Sequence

    给你一个1~n排好的数组,每次提一个数到最前面,问你最后形成的序列. 就把他的输入顺序倒过来输出即可.没出现过的再按原序输出. #include<cstdio> using namespa ...

  4. [AGC010E] Rearranging [拓扑排序+堆]

    题面 传送门 思路 首先,一个显然的结论是:Alice调整过后的序列中任意两个不互质的数的相对顺序无法改变 那么我们可以以这个性质为突破口 我们在两个不互质的权值的点之间连一条边(没错这是个图论题!! ...

  5. AT2306 Rearranging

    有一个显然的,就是不互质的数的相对位置是不会改变的,那么我们把它们放到一个连通块里面去,然后我交换就是交换两个里面最小的对吧.直接连起来然后跑\(TopSort\)就行了. #include<s ...

  6. [atACL001F]Center Rearranging

    有一个(比较显然又有点假的)结论:最优方案中(若存在),每一个数(指$3n$个)最多被移动1次 先$o(n^{2})$枚举移动到队首和队尾的操作次数(即目标状态的一个前缀和后缀),判定能否合法 首先, ...

  7. CF1093B Letters Rearranging 题解

    Content 有 \(t\) 次询问,每次询问给定一个字符串 \(s\).定义一个"好的字符串"为不是回文串的字符串.对于每一次询问,求出任意一个重新排列能够得到的"好 ...

  8. iOS xml文件的解析方式 XMLDictionary,GDataXMLNode,NSXMLParser

    iOS9之后,默认网络请求是https,所有我们要设置一下网络安全,具体设置如下 1.第三方类库 XMLDictionary 下载地址: https://github.com/nicklockwood ...

  9. 【Swift】Alamofile网络请求数据更新TableView的坑

    写这篇BLOG前,有些话不得不提一下,就仅当发发恼骚吧... 今天下午为了一个Alamofire取得数据而更新TableView的问题,查了一下午的百度(360也是见鬼的一样),竟然没有一个简单明了的 ...

  10. 比特币_Bitcoin 简介

    2008-11   Satoshi Nakamoto  Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...

随机推荐

  1. Java - ReentrantLock锁分析

    Java - JUC核心类AbstractQueuedSynchronizer(AQS)底层实现 一.  AQS内部结构介绍 JUC是Java中一个包   java.util.concurrent . ...

  2. 遗传算法解决航路规划问题(MATLAB)

    遗传算法 文章部分图片和思路来自司守奎,孙兆亮<数学建模算法与应用>第二版 定义:遗传算法是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,模拟自然界中的声明进化机制,在人工系统中实 ...

  3. PDF 补丁丁 1.0 正式版

    经过了一年多的测试和完善,PDF 补丁丁发布第一个开放源代码的正式版本了. PDF 补丁丁也是国内首先开放源代码.带有修改和阅读PDF的功能的 PDF 处理程序之一. 源代码网址:https://gi ...

  4. DesignPattern-part3

    title: "modern C++ DesignPattern-Part3" date: 2018-04-12T19:08:49+08:00 lastmod: 2018-04-1 ...

  5. Mysql进击篇-存储引擎、索引、sql优化、视图、锁、innoDb、管理

    1.存储引擎 (1)连接层 最上层是一些客户端和连接服务,主要完成一些类似于连接处理,授权认证.以及相关的安全方案,服务器也会为安全接入的每个客户端验证它所具有的操作权限 (2)服务层 第二层架构主要 ...

  6. 解决Promise的多并发问题

    提起控制并发,大家应该不陌生,我们可以先来看看多并发,再去聊聊为什么要去控制它 多并发一般是指多个异步操作同时进行,而运行的环境中资源是有限的,短时间内过多的并发,会对所运行的环境造成很大的压力,比如 ...

  7. Vue Vuex状态管理

    1.1 理解 Vuex 1.1.1 Vuex 是什么 概念:专门在 Vue 中实现集中式状态(数据)管理的一个 Vue 插件,对 Vue 应用中多个组件的共享状态进行集中式的管理(读/写),也是一种组 ...

  8. Solution Set -「ABC 205」

    应该是最近最水的 ABC 了吧. 「ABC 205A」kcal Link. 略 #include <bits/stdc++.h> using ll = long long; #define ...

  9. ArcGIS将遥感影像的0值设置为NoData

      本文介绍在ArcMap软件中,将栅格图层中的0值或其他指定数值作为NoData值的方法.   在处理栅格图像时,有时会发现如下图所示的情况--我们对某一个区域的栅格数据进行分类着色后,其周边区域( ...

  10. MySQL实战实战系列 07 行锁功过:怎么减少行锁对性能的影响?

    在上一篇文章中,我跟你介绍了 MySQL 的全局锁和表级锁,今天我们就来讲讲 MySQL 的行锁. MySQL 的行锁是在引擎层由各个引擎自己实现的.但并不是所有的引擎都支持行锁,比如 MyISAM ...