UVA 10791 Minimum Sum LCM
唯一分解定理
把n分解为 n=a1^p1*a2^p2*...的形式,易得每个ai^pi作为一个单独的整数最优。
坑:
n==1 ans=2;
n因子种数只有一个 ans++;
注意溢出。
#include <iostream>
#include <cstring>
using namespace std; typedef long long ll; ll ans=;
ll n;
ll sign[];
ll pri[];
int tot; void getpri (){
memset (sign,,sizeof sign);
sign[]=sign[]=;
for (int i=;i*i<;i++)
if (!sign[i])
for (int j=i*i;j<;j+=i)
sign[j]=;
tot=;
for (int i=;i<;i++)
if (!sign[i])
pri[tot++]=i;
} ll solved (){
if (n==)
return ;
ll ans=;
int flag=;
for (int i=;i<tot&&pri[i]*pri[i]<=n;i++){
ll temp=;
if (n%pri[i]==){
temp=;
flag++;
while (n%pri[i]==){
temp*=pri[i];
n/=pri[i];
}
}
ans+=temp;
}
if (n!=){
flag++;
ans+=n;
}
if (flag<=)
ans+=;
return ans;
} int main (){//int a=46341;cout<<a*a<<" "<<(1<<31)<<endl;
int kase=;
getpri ();
while (cin>>n&&n){
ans=solved ();
cout<<"Case "<<++kase<<": "<<ans<<endl;
}
return ;
}
UVA 10791 Minimum Sum LCM的更多相关文章
- UVA.10791 Minimum Sum LCM (唯一分解定理)
UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- UVa 10791 - Minimum Sum LCM(唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 数论-质因数(gcd) UVa 10791 - Minimum Sum LCM
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍 ...
- UVA 10791 - Minimum Sum LCM(坑)
题目链接 不知道为什么,我用cin,cout就是过不了...改成scanf过了... 还是我居然理解错题意了,已经不能用看错了...至少两个数字,我理解成两个数字了,还写了个爆搜... #includ ...
- UVA - 10791 Minimum Sum LCM(最小公倍数的最小和)
题意:输入整数n(1<=n<231),求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小.输出最小的和. 分析: 1.将n分解为a1p1*a2p2……,每个aipi作为一个单独 ...
- Minimum Sum LCM(uva10791+和最小的LCM+推理)
L - Minimum Sum LCM Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submi ...
- Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...
随机推荐
- ServletConfig对象 【通过此对象获取到web.xml中的信息】
用途: 1)想让当前的Servlet读取一些在web.xml文件配置的初始化参数时, 可以使用ServletConfig对象,他是Servlet运 ...
- 使用QtScript库解析Json数组例子
本文转载自:http://blog.sina.com.cn/s/blog_671732440100uwxh.html 使用qtscipt库解析json数组首先在工程文件中加 QT += ...
- UNIX网络编程--ioctl操作(十七)
一.概述 在本书中有两个地方都对这个函数进行了介绍,其实还有很多地方需要这个函数.ioclt函数传统上一直作为纳西而不适合归入其他精细定义类别的特性的系统接口.网络程序(特别是服务器程序)经常在程序启 ...
- nodejs教程
http://www.yiibai.com/nodejs/ http://www.runoob.com/nodejs/nodejs-tutorial.html http://www.runoob.co ...
- BZOJ1635: [Usaco2007 Jan]Tallest Cow 最高的牛
1635: [Usaco2007 Jan]Tallest Cow 最高的牛 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 346 Solved: 184 ...
- 栈和托管堆/值类型和引用类型/强制类型转换/装箱和拆箱[C#]
原文地址:http://www.cnblogs.com/xy8.cn/articles/1227228.html 一.栈和托管堆 通用类型系统(CTS)区分两种基本类型:值类型和引用类型.它 ...
- Corrupted MAC on input
Corrupted MAC on input Incorrect MAC received on packet
- 在线服装零售商Betabrand获得650万美元风投 - 投资风向 - 创业邦
在线服装零售商Betabrand获得650万美元风投 - 投资风向 - 创业邦 在线服装零售商Betabrand获得650万美元风投
- WPF - ViewModle中关闭Window
在Binding close event时候,需要从ViewModel关闭Window. 一个很简洁的解决方案就是,将Window 当做CommandParameter传过去. Command=&qu ...
- mac复制粘贴剪切
win下复制粘贴剪切: Ctrl+C,Ctrl+V,Ctrl+X; mac下lion之后已经有了一直让win用户吐槽的剪切功能: 复制粘贴剪切:Command+C,Command+V,Command+ ...