UVA 10791 Minimum Sum LCM
唯一分解定理
把n分解为 n=a1^p1*a2^p2*...的形式,易得每个ai^pi作为一个单独的整数最优。
坑:
n==1 ans=2;
n因子种数只有一个 ans++;
注意溢出。
#include <iostream>
#include <cstring>
using namespace std; typedef long long ll; ll ans=;
ll n;
ll sign[];
ll pri[];
int tot; void getpri (){
memset (sign,,sizeof sign);
sign[]=sign[]=;
for (int i=;i*i<;i++)
if (!sign[i])
for (int j=i*i;j<;j+=i)
sign[j]=;
tot=;
for (int i=;i<;i++)
if (!sign[i])
pri[tot++]=i;
} ll solved (){
if (n==)
return ;
ll ans=;
int flag=;
for (int i=;i<tot&&pri[i]*pri[i]<=n;i++){
ll temp=;
if (n%pri[i]==){
temp=;
flag++;
while (n%pri[i]==){
temp*=pri[i];
n/=pri[i];
}
}
ans+=temp;
}
if (n!=){
flag++;
ans+=n;
}
if (flag<=)
ans+=;
return ans;
} int main (){//int a=46341;cout<<a*a<<" "<<(1<<31)<<endl;
int kase=;
getpri ();
while (cin>>n&&n){
ans=solved ();
cout<<"Case "<<++kase<<": "<<ans<<endl;
}
return ;
}
UVA 10791 Minimum Sum LCM的更多相关文章
- UVA.10791 Minimum Sum LCM (唯一分解定理)
UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- UVa 10791 - Minimum Sum LCM(唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 数论-质因数(gcd) UVa 10791 - Minimum Sum LCM
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍 ...
- UVA 10791 - Minimum Sum LCM(坑)
题目链接 不知道为什么,我用cin,cout就是过不了...改成scanf过了... 还是我居然理解错题意了,已经不能用看错了...至少两个数字,我理解成两个数字了,还写了个爆搜... #includ ...
- UVA - 10791 Minimum Sum LCM(最小公倍数的最小和)
题意:输入整数n(1<=n<231),求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小.输出最小的和. 分析: 1.将n分解为a1p1*a2p2……,每个aipi作为一个单独 ...
- Minimum Sum LCM(uva10791+和最小的LCM+推理)
L - Minimum Sum LCM Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submi ...
- Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...
随机推荐
- Spark学习笔记--stage和task的划分
https://github.com/JerryLead/SparkInternals/blob/master/markdown/3-JobPhysicalPlan.md stage 和 task 的 ...
- PYTHON线程知识再研习E---条件变量同步Condition
Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的 acquire和release方法外,还提供了wait和notify ...
- 代理模式 - OK
代理模式(Proxy),为其他对象提供一种代理以控制对这个对象的访问. 在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以在客户端和目标对象之间起到中介的作用. 代理模式的优点: ...
- 【转】Win7、Ubuntu双系统正确卸载Ubuntu系统--不错
原文网址:http://my.oschina.net/u/1377657/blog/281872 如果ubuntu不是以wubi方式安装的,而是U盘或者光盘装的双系统,那么卸载ubuntu时要慎重,不 ...
- VS2010之MFC串口通信的编写教程--转
http://wenku.baidu.com/link?url=K1XPdj9Dcf2of_BsbIdbPeeZ452uJqiF-s773uQyMzV2cSaPRIq6RddQQH1zr1opqVBM ...
- AS3给显示对象加边框
给显示对象加边框,可以有以下三种方法1.根据相交路径的缠绕规则的奇偶规则法(使用奇偶缠绕规则时,任何相交路径都交替使用开放填充与闭合填充.如果使用同一填充绘制的两个正方形相交,则不会填充相交的区域.通 ...
- android开发学习 几个有用的学习资料~
<Android高级应用开发-基础篇> 针对Android基础入门课程,包含了Android四大件基础.UI,Launcher等等.这个课程学习之后也是进一步深入的基础. <Andr ...
- MyBatis魔法堂:Insert操作详解
一.前言 数据库操作怎能少了INSERT操作呢?下面记录MyBatis关于INSERT操作的笔记,以便日后查阅. 二. insert元素 属性详解 其属性如下: parameterType:入参的全限 ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- socket 发送Ping包
参考链接: http://blog.csdn.net/zpxili/article/details/11542041 http://blog.csdn.net/cbuttonst/article/de ...