BZOJ 1179 [Apio2009]Atm(强连通分量)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1179
【题目大意】
给出一张有向带环点权图,给出一些终点,在路径中同一个点的点权只能累加一次,问从起点到任意终点所能得到的最大点权和。
【题解】
因为有环,所以一定存在强连通分量,我们将所有环处理成点,在SCC为点的重构图上跑SPFA最长路就可以得到答案。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=500010,M=500010;
int G[3][N],NXT[3][M<<1],V[3][M<<1],ed=0,f[N],q[N],t,vis[N],n,m,x,y,dp[N],val[N];
void add(int x,int y){
V[0][++ed]=y;NXT[0][ed]=G[0][x];G[0][x]=ed;
V[1][ed]=x;NXT[1][ed]=G[1][y];G[1][y]=ed;
}
void ADD(int x,int y){V[2][++ed]=y;NXT[2][ed]=G[2][x];G[2][x]=ed;}
void dfs1(int x){
vis[x]=1;
for(int i=G[0][x];i;i=NXT[0][i])if(!vis[V[0][i]])dfs1(V[0][i]);
q[++t]=x;
}
void dfs2(int x,int y){
vis[x]=0,f[x]=y;
for(int i=G[1][x];i;i=NXT[1][i])if(vis[V[1][i]])dfs2(V[1][i],y);
}
int h,td,d[N],in[N],i,j;
void spadd(int x,int y){
if(y<=d[x])return;
d[x]=y;
if(!in[x]){
in[x]=1;
if(y>d[q[h]])q[--h]=x;else q[++td]=x;
}
}
void spfa(int S){
int i,x;
for(i=h=1;i<=n;i++)d[i]=val[i],in[i]=0;d[S]=td=0;spadd(S,val[S]);
while(h!=td+1)for(i=G[2][x=q[h++]],in[x]=0;i;i=NXT[2][i])spadd(V[2][i],d[x]+val[V[2][i]]);
}
void R(int&a){
char ch;while(!((ch=getchar())>='0')&&(ch<='9'));
a=ch-'0';while(((ch=getchar())>='0')&&(ch<='9'))a*=10,a+=ch-'0';
}
int S,P;
int main(){
R(n),R(m);
for(int i=1;i<=m;i++){
R(x);R(y);
add(x,y);
}for(t=0,i=1;i<=n;i++)if(!vis[i])dfs1(i);
for(i=n;i;i--)if(vis[q[i]])dfs2(q[i],q[i]);
for(int i=1;i<=n;i++){scanf("%d",&x);val[f[i]]+=x;}
for(ed=0,i=1;i<=n;i++)for(j=G[0][i];j;j=NXT[0][j])
if(f[i]!=f[V[0][j]])ADD(f[i],f[V[0][j]]);
R(S);R(P); S=f[S]; int ans=0; spfa(S);
for(int i=1;i<=P;i++){R(x);ans=max(ans,d[f[x]]);}
printf("%d\n",ans);
return 0;
}
BZOJ 1179 [Apio2009]Atm(强连通分量)的更多相关文章
- BZOJ 1179: [Apio2009]Atm( tarjan + 最短路 )
对于一个强连通分量, 一定是整个走或者不走, 所以tarjan缩点然后跑dijkstra. ------------------------------------------------------ ...
- bzoj 1179[Apio2009]Atm (tarjan+spfa)
题目 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每行一 ...
- bzoj 1179 [Apio2009]Atm 缩点+最短路
[Apio2009]Atm Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 4290 Solved: 1893[Submit][Status][Dis ...
- bzoj 1179: [Apio2009]Atm
Description Input 第 一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路 的起点和终点的 ...
- bzoj 1179 [Apio2009]Atm——SCC缩点+spfa
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1179 显然SCC缩点. 然后准备倒着拓扑序推到st,结果WA. 听TJ说dj求最长路会发生不 ...
- bzoj 1179: [Apio2009]Atm【tarjan+spfa】
明明优化了spfa还是好慢-- 因为只能取一次值,所以先tarjan缩点,把一个scc的点权和加起来作为新点的点权,然后建立新图.在新图上跑spfa最长路,最后把酒吧点的dis取个max就是答案. # ...
- 缩点+spfa最长路【bzoj】 1179: [Apio2009]Atm
[bzoj] 1179: [Apio2009]Atm Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri ...
- 1179: [Apio2009]Atm
1179: [Apio2009]Atm Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 1629 Solved: 615[Submit][Status ...
- BZOJ 1179 Atm(强连通分量缩点+DP)
题目说可以通过一条边多次,且点权是非负的,所以如果走到图中的一个强连通分量,那么一定可以拿完这个强连通分量上的money. 所以缩点已经很明显了.缩完点之后图就是一个DAG,对于DAG可以用DP来求出 ...
随机推荐
- nginx1.9.4 +php 5.5.29+yii2.0配置手册
nginx1.9.4 +php 5.5.29+yii2.0配置手册 目录 一. php5.5.29安装配置 2 二. nginx1.9.4安装配置 2 三. yii2.0 ...
- bootstrap 3 のcheckbox-inline
<div class="form-group"> <p class="control-label"><b> ...
- mysql memcache
http://blog.csdn.net/newjueqi/article/details/8350643
- css案例学习之盒子模型
定义:每个盒子都有:边界.边框.填充.内容四个属性: 每个属性都包括四个部分:上.右.下.左:这四部分可同时设置,也可分别设置:里的抗震辅料厚度,而边框有大小和颜色之分,我们又可以理解为生活中所见盒子 ...
- Unix/Linux环境C编程入门教程(18) kali-linuxCCPP开发环境搭建
1. Kali linux是BT5的晋级版本,用于信息安全.基于Debian7内核.新建虚拟机. 2. 选择默认虚拟机 3. 选择稍后安装操作系统 4.选择Linux Debian7 64位,因为Ka ...
- Codeforces 235E
Codeforces 235E 原题 题目描述:设\(d(n)\)表示\(n\)的因子个数, 给定\(a, b, c\), 求: \[\sum_{i=1}^{a} \sum_{j=1}^{b} \su ...
- 【转】浅析terminal创建时ptmx和pts关系
我们打开一个terminal,那么将会在devpts文件系统/dev/pts下创建一个对应的pts字符文件,该pts字符文件节点直接由/dev/ptmx节点的驱动函数ptmx_open()调用de ...
- 克拉夫斯曼高端定制 刘霞---【YBC中国国际青年创业计划】
克拉夫斯曼高端定制 刘霞---[YBC中国国际青年创业计划] 克拉夫斯曼高端定制 刘霞
- php中有用插件集合
1. NuSOAP NuSOAP提供一组PHP类用于帮助开发者创建和调用基于SOAP1.1.WSDL1.1与HTTP1.0/1.1的Web Services, 可以跨平台.跨语言的请求服务.
- Oracle 经常使用命令小结
1.当前数据库中查看建表语句 select dbms_metadata.get_ddl('TABLE','表名') from dual; 2.当前数据库中查看视图创建Sql select text f ...