一.前言

前面我们学习的是使用Scala和Java开发Spark。最近补充了下Python基础,那么就用Python开发下Spark。Python开发Spark简称PySpark。

二.环境准备

1.安装Python环境

安装方式有两种

使用原生方式安装

直接去官网下载,window下载 xxx_executable installer这样的。

下载完后傻瓜式安装(注意安装的时候勾选将Python配置到环境。注意安装路径不要有中文,不要有空格。

使用anaconda安装

下载anaconda,然后傻瓜式安装,安装完后就会默认给安装一个Python版本。

如果我们需要手动配置版本,请使用上一篇博文介绍,将Python下载后,手动配置下环境即可。

2.配置Spark Home

下载Spark并解压,然后在系统变量里面添加变量名 SPARK_HOME ,变量值就是Spark解压路径,比如我 的F:\BigDataPack\spark\spark-2.4.5-bin-hadoop2.7

添加完后,再在Path里面添加 %SPARK_HOME%\bin 。然后确定即可。

3.安装pyspark

pyspark是操作spark的库。安装方式有两种:

使用pip安装

直接在cmd运行,pip install pyspark

直接拷贝

进入 spark根目录/python/lib 下面,将pyspark解压,将解压后的文件复制到

anaconda或者你手动安装的python 的 Lib/site-packages 下面。

4. 安装py4j

py4j是负责python和java通信的。安装方式有两种:

使用pip安装

直接在cmd运行,pip install py4j

直接拷贝

进入 spark根目录/python/lib 下面,将py4j解压,将解压后的文件复制到

anaconda或者你手动安装的python 的 Lib/site-packages 下面。

三.使用案例

项目结构:

BrowserCard文件内容:

192.156.345.6 www.baidu.com
192.156.345.6 www.shuai7boy.vip
192.156.345.6 www.google.com
145.345.67.78 www.baidu.com
192.156.345.6 www.baidu.com
145.345.67.78 www.cnblogs.com
135.674.33.23 www.csdn.cn

words文件内容:

hello world
hello YiMing
hello world

案例1.计算wordcount

代码如下:

from pyspark import SparkContext, SparkConf

if __name__ == '__main__':
conf = SparkConf().setAppName("word").setMaster("local") sc = SparkContext(conf=conf)
rdd = sc.textFile("words")
result = rdd.flatMap(lambda line: line.split(" ")).map(lambda line: (line, 1)).reduceByKey(lambda a, b: a + b)
result.foreach(print)

运行结果:

E:\SoftCollection\Anaconda\Install\python.exe F:/Code/Python/PySparkTest/UV.py
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
[Stage 2:> (0 + 1) / 1]('www.baidu.com', 2)
('www.cnblogs.com', 1)
('www.csdn.cn', 1)
('www.google.com', 1)
('www.shuai7boy.vip', 1) Process finished with exit code 0

案例2.计算pv

代码如下:

from pyspark import SparkConf, SparkContext

if __name__ == '__main__':
conf = SparkConf().setMaster("local").setAppName("PV")
sc = SparkContext(conf=conf)
cards = sc.textFile("BrowserCard")
result = cards.map(lambda line: (line.split(" ")[1], 1)).reduceByKey(lambda a, b: a + b)
result.foreach(print)

运行结果:

E:\SoftCollection\Anaconda\Install\python.exe F:/Code/Python/PySparkTest/PV.py
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
[Stage 0:> (0 + 1) / 1]('www.baidu.com', 3)
('www.shuai7boy.vip', 1)
('www.google.com', 1)
('www.cnblogs.com', 1)
('www.csdn.cn', 1) Process finished with exit code 0

案例3.计算uv

代码如下:

from pyspark import SparkConf, SparkContext

if __name__ == '__main__':
conf = SparkConf().setMaster("local").setAppName("PV")
sc = SparkContext(conf=conf)
cards = sc.textFile("BrowserCard")
result = cards.map(lambda line: line.split(" ")[0] + "_" + line.split(" ")[1]).distinct().map(
lambda line: (line.split(
"_")[1], 1)).reduceByKey(lambda a, b: a + b).sortByKey();
result.foreach(print)

运行结果:

E:\SoftCollection\Anaconda\Install\python.exe F:/Code/Python/PySparkTest/UV.py
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
[Stage 0:> (0 + 1) / 1]('www.baidu.com', 2)
('www.cnblogs.com', 1)
('www.csdn.cn', 1)
('www.google.com', 1)
('www.shuai7boy.vip', 1) Process finished with exit code 0

系列传送门

入门大数据---PySpark的更多相关文章

  1. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  2. 入门大数据---Spark_Streaming整合Flume

    一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...

  3. 入门大数据---SparkSQL外部数据源

    一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...

  4. 入门大数据---Hadoop是什么?

    简单概括:Hadoop是由Apache组织使用Java语言开发的一款应对大数据存储和计算的分布式开源框架. Hadoop的起源 2003-2004年,Google公布了部分GFS和MapReduce思 ...

  5. 入门大数据---MapReduce-API操作

    一.环境 Hadoop部署环境: Centos3.10.0-327.el7.x86_64 Hadoop2.6.5 Java1.8.0_221 代码运行环境: Windows 10 Hadoop 2.6 ...

  6. 入门大数据---Flume整合Kafka

    一.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合 ...

  7. 入门大数据---安装ClouderaManager,CDH和Impala,Hue,oozie等服务

    1.要求和支持的版本 (PS:我使用的环境,都用加粗标识了.) 1.1 支持的操作系统版本 操作系统 版本 RHEL/CentOS/OL with RHCK kernel 7.6, 7.5, 7.4, ...

  8. 入门大数据---Kylin是什么?

    一.Kylin是什么? Apache Kylin是一个开源的.分布式的分析型数据仓库,提供Hadoop/Spark 上的SQL查询接口及多维度分析(OLAP)能力以支持超大规模的数据,最初由eBay开 ...

  9. 大数据学习系列之Hadoop、Spark学习线路(想入门大数据的童鞋,强烈推荐!)

    申明:本文出自:http://www.cnblogs.com/zlslch/p/5448857.html(该博客干货较多) 1 Java基础: 视频方面:          推荐<毕向东JAVA ...

随机推荐

  1. Rocket - debug - TLDebugModuleInner - Abstract Command State Machine

    https://mp.weixin.qq.com/s/RcXI8uEHvZHGCvX3DoVR4Q 简单介绍TLDebugModuleInner中处理抽象命令时的状态机. 1. CtrlState 定 ...

  2. ActiveMQ 笔记(七)ActiveMQ的多节点集群

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.Activemq 的集群思想 1.使用Activemq集群的原因 面试题: 引入消息中间件后如何保证 ...

  3. Java实现 LeetCode 806 写字符串需要的行数 (暴力模拟)

    806. 写字符串需要的行数 我们要把给定的字符串 S 从左到右写到每一行上,每一行的最大宽度为100个单位,如果我们在写某个字母的时候会使这行超过了100 个单位,那么我们应该把这个字母写到下一行. ...

  4. Java实现 洛谷 导弹拦截

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  5. Java实现 LeetCode 516 最长回文子序列

    516. 最长回文子序列 给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 ...

  6. Java实现 LeetCode 263 丑数

    263. 丑数 编写一个程序判断给定的数是否为丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例 1: 输入: 6 输出: true 解释: 6 = 2 × 3 示例 2: 输入: 8 输 ...

  7. 浅谈js运行机制

    前言 因为js的运行机制十分重要,理解起来也十分抽象,仍还是在这里做个记录,加深自己的记忆. 总之,希望本文的内容能够对您的学习或者工作有所帮助.另,如果有任何的错误或者不足请指正! 如何理解js单线 ...

  8. dfs算法总结

    DFS 深度优先搜索 主要有两种实现方法:栈和递归 什么是DFS?说白了就是一直遍历元素的方式而已,我们可以把它看成是一条小蛇,在每个分叉路口随意选择一条路线走,直到撞到南墙,才会调头返回到上一个分叉 ...

  9. Spring Boot 教程 - Elasticsearch

    1. Elasticsearch简介 Elasticsearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearc ...

  10. RabbitMQ是什么

    1.引入MQ 1.1什么是MQ ​ MQ(Message Quene):翻译为 消息队列,通过典型的 生产者 和 消费者 模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息.因为消息的 ...