前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

图像属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

1. 形状:shape

图像的形状可以通过 shape 关键字进行获取,使用 shape 关键的后,获取的信息包括行数、列数、通道数的元祖。

需要注意的是,如果是灰度图片,只会返回图像的行数和列数,而彩色图片才会图像的行数、列数和通道数。

示例如下:

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.shape) # 结果打印
(310, 560, 3) # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.shape) # 结果打印
(310, 560)

2. 像素数量:size

图像的像素数量可以通过关键字 size 进行获取。

同样需要注意的是,灰度图片的像素数量是要小于彩色图片的,具体的关系是 1/3 。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.size) # 结果打印
520800 # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.size) # 结果打印
173600

3. 图像类型-dtype

图像类型是通过关键字 dtype 获取的,通常返回 uint8 ,这个属性在彩色图片和灰度图片中是保持一致的。

注意 dtype 在调试时非常重要,因为 OpenCV-Python 代码中的大量错误是由无效的数据类型引起的。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.dtype) # 结果打印
uint8 # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.dtype) # 结果打印
uint8

获取图像感兴趣 ROI 区域

ROI(Region of Interest)表示感兴趣区域。

它是指从被处理图像以方框、圆形、椭圆、不规则多边形等方式勾勒出需要处理的区域。可以通过各种算子(Operator)和函数求得感兴趣ROI区域,并进行图像的下一步处理,被广泛应用于热点地图、人脸识别、图像分割等领域。

如果我们要对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。

我们通过像素矩阵可以直接得到 ROI 区域,如: img[200:400, 200:400]

比如下面这个示例我们获取马里奥的脸,然后再把它显示出来:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

face = img[10:175, 100:260]

# 原始图像显示
cv.imshow("demo", img) # 马里奥的脸显示
cv.imshow("face", face) #等待显示
cv.waitKey(0)
cv.destroyAllWindows()

它的结果如下:

如果我们要把这两张图像合成一张图像,可以对图像进行区域赋值:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 获取 ROI 区域
face = img[10:175, 100:260]
# 图像赋值
img[0:165, 0:160] = face # 原始图像显示
cv.imshow("demo", img) #等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

这里我稍微偷点懒,直接就把 ROI 区域放在了图片的左上角,这个位置可以随意指定,但是指定的区域要和 ROI 的区域一样大,否则会报一个 ValueError 的错误。

拆分和合并图像通道

1. 拆分图像通道

有些时候,我们需要分别处理图像的 B,G,R 通道。的通道,用 PS 抠过图的人应该都清楚抠图的时候可以使用单通道进行抠图操作。

将图像的通道拆分出来可以使用 split() 函数,如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

#拆分通道
b, g, r = cv.split(img) # 分别显示三个通道的图像
cv.imshow("B", b)
cv.imshow("G", g)
cv.imshow("R", r) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

可以看到,三个通道的图像看起来都是灰白色的,这个玩过 PS 的人应该都很熟悉。

除了使用 split() 函数获取图像通道,还可以通过索引进行获取,代码如下:

b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]

如果需要将所有红色像素都设置为零,无需先拆分通道,索引更快:

img[:, :, 2] = 0

注意: split() 函数是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。

2. 合并图像通道

合并图像通道我们使用函数 merge() ,示例如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 拆分通道
b, g, r = cv.split(img) # 合并图像通道
m = cv.merge([r, g, b]) cv.imshow('merge', m) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

这里如果是按照 [r, g, b] 进行图像通道合并,我们的马里奥就会变身成为蓝精灵,因为 OpenCV 是按照 BGR 读取的,如果想要显示会原图,合并的时候也按照 [b, g, r] 合并即可,如下:

如果我们想要做一个真正的蓝精灵,可以只提取 B 颜色通道,其余两个 G 、 R 通道全部设置为 0 ,这样,我们就获得了一个真正的蓝精灵(整个图像只有蓝色通道),代码如下:

import cv2 as cv
import numpy as np # 读取图片
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
rows, cols, chn = img.shape # 拆分通道
b = img[:, :, 0]
g = np.zeros((rows,cols), dtype=img.dtype)
r = np.zeros((rows,cols), dtype=img.dtype) # 合并图像通道
m = cv.merge([b, g, r]) cv.imshow('merge', m) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

同理,如果想要绿精灵和红精灵,一样可以做出来。

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/eastmount/article/details/82177300

http://woshicver.com/

Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理的更多相关文章

  1. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  2. Python图像处理:如何获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  3. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. 2019-2020-1 20199310《Linux内核原理与分析》第六周作业

    1.问题描述 在前面的文章中,学习了系统调用的相关理论知识,并使用库函数API和C代码中嵌入汇编代码两种方式使用getpid()系统调用.本文将内容围绕系统调用system_call的处理过程,在Me ...

  2. 数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST

    简介 在上一篇博客:数据挖掘入门系列教程(十点五)之DNN介绍及公式推导中,详细的介绍了DNN,并对其进行了公式推导.本来这篇博客是准备直接介绍CNN的,但是想了一下,觉得还是使用keras构建一个D ...

  3. Vue3.0新版API之composition-api入坑指南

    关于VUE3.0 由于vue3.0语法跟vue2.x的语法几乎是完全兼容的,本文主要介绍了如何使用composition-api,主要分以下几个方面来讲 使用vite体验vue3.0 composit ...

  4. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  5. 虚拟机 VMware Workstation Pro 15.5.0 及永久激活密钥

    虚拟机 VMware Workstation Pro 15.5.0 及永久激活密钥 虚拟机下载地址:https://download3.vmware.com/software/wkst/file/VM ...

  6. 源码学习VUE之Observe

    在文章 源码学习VUE之响应式原理我们大概描述了响应式的实现流程,主要写了observe,dep和wather的简易实现,以及推导思路.但相应代码逻辑并不完善,今天我们再来填之前的一些坑. Obser ...

  7. Tomcat 8 Host-Manager配置访问的方法,全网唯一正确配置

    2019独角兽企业重金招聘Python工程师标准>>> 环境: 操作系统:         Linux version 2.6.32-696.10.1.el6.x86_64 (moc ...

  8. muduo网络库源码学习————线程池实现

    muduo库里面的线程池是固定线程池,即创建的线程池里面的线程个数是一定的,不是动态的.线程池里面一般要包含线程队列还有任务队列,外部程序将任务存放到线程池的任务队列中,线程池中的线程队列执行任务,也 ...

  9. PHP命令执行学习总结

    前言 最近学习了PHP命令执行,内容比较多,把自己学到的总结下来,加深理解,水平有限,欢迎大佬斧正. 什么是PHP命令注入攻击? Command Injection,即命令注入攻击,是指由于Web应用 ...

  10. javaweb系统调优方案

    1. java代码优化 java代码优化6大原则 : https://blog.csdn.net/bunny1024/article/details/72803708 java代码优化: https: ...