前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

图像属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

1. 形状:shape

图像的形状可以通过 shape 关键字进行获取,使用 shape 关键的后,获取的信息包括行数、列数、通道数的元祖。

需要注意的是,如果是灰度图片,只会返回图像的行数和列数,而彩色图片才会图像的行数、列数和通道数。

示例如下:

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.shape) # 结果打印
(310, 560, 3) # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.shape) # 结果打印
(310, 560)

2. 像素数量:size

图像的像素数量可以通过关键字 size 进行获取。

同样需要注意的是,灰度图片的像素数量是要小于彩色图片的,具体的关系是 1/3 。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.size) # 结果打印
520800 # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.size) # 结果打印
173600

3. 图像类型-dtype

图像类型是通过关键字 dtype 获取的,通常返回 uint8 ,这个属性在彩色图片和灰度图片中是保持一致的。

注意 dtype 在调试时非常重要,因为 OpenCV-Python 代码中的大量错误是由无效的数据类型引起的。

import cv2 as cv

# 读取彩色图片
color_img = cv.imread("maliao.jpg", cv.IMREAD_ANYCOLOR) print(color_img.dtype) # 结果打印
uint8 # 读取灰度图片
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img.dtype) # 结果打印
uint8

获取图像感兴趣 ROI 区域

ROI(Region of Interest)表示感兴趣区域。

它是指从被处理图像以方框、圆形、椭圆、不规则多边形等方式勾勒出需要处理的区域。可以通过各种算子(Operator)和函数求得感兴趣ROI区域,并进行图像的下一步处理,被广泛应用于热点地图、人脸识别、图像分割等领域。

如果我们要对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。

我们通过像素矩阵可以直接得到 ROI 区域,如: img[200:400, 200:400]

比如下面这个示例我们获取马里奥的脸,然后再把它显示出来:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

face = img[10:175, 100:260]

# 原始图像显示
cv.imshow("demo", img) # 马里奥的脸显示
cv.imshow("face", face) #等待显示
cv.waitKey(0)
cv.destroyAllWindows()

它的结果如下:

如果我们要把这两张图像合成一张图像,可以对图像进行区域赋值:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 获取 ROI 区域
face = img[10:175, 100:260]
# 图像赋值
img[0:165, 0:160] = face # 原始图像显示
cv.imshow("demo", img) #等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

这里我稍微偷点懒,直接就把 ROI 区域放在了图片的左上角,这个位置可以随意指定,但是指定的区域要和 ROI 的区域一样大,否则会报一个 ValueError 的错误。

拆分和合并图像通道

1. 拆分图像通道

有些时候,我们需要分别处理图像的 B,G,R 通道。的通道,用 PS 抠过图的人应该都清楚抠图的时候可以使用单通道进行抠图操作。

将图像的通道拆分出来可以使用 split() 函数,如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

#拆分通道
b, g, r = cv.split(img) # 分别显示三个通道的图像
cv.imshow("B", b)
cv.imshow("G", g)
cv.imshow("R", r) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

可以看到,三个通道的图像看起来都是灰白色的,这个玩过 PS 的人应该都很熟悉。

除了使用 split() 函数获取图像通道,还可以通过索引进行获取,代码如下:

b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]

如果需要将所有红色像素都设置为零,无需先拆分通道,索引更快:

img[:, :, 2] = 0

注意: split() 函数是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。

2. 合并图像通道

合并图像通道我们使用函数 merge() ,示例如下:

import cv2 as cv

img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)

# 拆分通道
b, g, r = cv.split(img) # 合并图像通道
m = cv.merge([r, g, b]) cv.imshow('merge', m) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

这里如果是按照 [r, g, b] 进行图像通道合并,我们的马里奥就会变身成为蓝精灵,因为 OpenCV 是按照 BGR 读取的,如果想要显示会原图,合并的时候也按照 [b, g, r] 合并即可,如下:

如果我们想要做一个真正的蓝精灵,可以只提取 B 颜色通道,其余两个 G 、 R 通道全部设置为 0 ,这样,我们就获得了一个真正的蓝精灵(整个图像只有蓝色通道),代码如下:

import cv2 as cv
import numpy as np # 读取图片
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
rows, cols, chn = img.shape # 拆分通道
b = img[:, :, 0]
g = np.zeros((rows,cols), dtype=img.dtype)
r = np.zeros((rows,cols), dtype=img.dtype) # 合并图像通道
m = cv.merge([b, g, r]) cv.imshow('merge', m) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

同理,如果想要绿精灵和红精灵,一样可以做出来。

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/eastmount/article/details/82177300

http://woshicver.com/

Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理的更多相关文章

  1. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  2. Python图像处理:如何获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  3. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. python学习21之高级特性

    '''''''''1.切片(1)谁可以进行切片操作?——列表,元组,字符串(2)切片有以下几种操作'''#[a:b]:取从下标为a的元素开始,到下标为b-1的元素结束L=['aa','bb','cc' ...

  2. docker-数据管理(3)

    Docker 容器中管理数据主要有两种方式: 数据卷(Data volumes) 数据卷容器(Data volumes containers 数据卷是一个可供一个或者多个容器使用的特殊目录,它绕过UF ...

  3. Spring5参考指南:依赖注入

    文章目录 依赖注入 依赖注入的配置详解 depends-on lazy-init 自动装载 方法注入 依赖注入 依赖注入就是在Spring创建Bean的时候,去实例化该Bean构造函数所需的参数,或者 ...

  4. javaScript常用到的方法

    判断一个对象是否为空对象,不为null,仅仅是{};可以使用如下方法判断: if (JSON.stringify(object) === '{}') { //.. } //也可以 if (Object ...

  5. Linked List-3

    第一篇终结Linked List(一).终结Linked List(二)主要讲了单链表的基础知识,接下来的第二篇主要讲一些比较经典的问题. 一.Count() 给一个单链表和一个整数,返回这个整数在链 ...

  6. #Week3 Linear Regression with Multiple Variables

    一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训 ...

  7. 数据库SQL语言从入门到精通--Part 6--单表查询(快来PICK)

    数据库从入门到精通合集(超详细,学习数据库必看) 查询操作是SQL语言中很重要的操作,我们今天就来详细的学习一下. 一.数据查询的语句格式 SELECT [ALL|DISTINCT] <目标列表 ...

  8. 图论--2-SAT--HDOJ/HDU 1824 Let's go home

    Problem Description 小时候,乡愁是一枚小小的邮票,我在这头,母亲在那头.                         -- 余光中 集训是辛苦的,道路是坎坷的,休息还是必须的. ...

  9. POJ - 3074 Sudoku (搜索)剪枝+位运算优化

    In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For exa ...

  10. RF(页面断言)

    一.RF中断言方式 title should be(断言title与预期指定的title内容相等) Open Browser https://www.baidu.com/ gc Title Shoul ...