Problem Description

people in USSS love math very much, and there is a famous math problem
give you two integers n,a,you are required to find 2 integers b,c such that an+bn=cn.
Input
one line contains one integer T;(1≤T≤1000000)
next T lines contains two integers n,a;(0≤n≤1000,000,000,3≤a≤40000)

Output

print two integers b,c if b,c exits;(1≤b,c≤1000,000,000)
else print two integers -1 -1 instead.

Sample Input

1
2 3

Sample Output

4 5

Source

2018中国大学生程序设计竞赛 - 网络选拔赛

勾股数定理详解

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1010;
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
ll a, n;
scanf("%lld%lld", &n, &a);
if (n > 2 || n == 0)
printf("-1 -1\n");
else
{
ll b, c, s;
if (n == 1)
printf("1 %lld\n", a + 1);
else if (n == 2)
{
if (a % 2 == 1)
{
b = a * a / 2;
c = b + 1;
}
else
{
s = a * a / 2;
b = s / 2 - 1;
c = s / 2 + 1;
}
printf("%lld %lld\n", b, c);
}
}
}
return 0;
}

数学--数论--Find Integer(勾股数定理)的更多相关文章

  1. 数学--数论--直角三角形--勾股数---奇偶数列法则 a^2+b^2=c^2

    先说勾股数: 勾股数,又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 勾股数规律: 首先是奇数组口 ...

  2. hdu6441 Find Integer 求勾股数 费马大定理

    题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...

  3. 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  4. hdu 6441 Find Integer(费马大定理+勾股数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...

  5. hdu 6441 (费马大定理+勾股数 数学)

    题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b  c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...

  6. Project Euler 39 Integer right triangles( 素勾股数 )

    题意:若三边长 { a , b , c } 均为整数的直角三角形周长为 p ,当 p = 120 时,恰好存在三个不同的解:{ 20 , 48 , 52 } , { 24 , 45 , 51 } , ...

  7. 勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创)

    勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创) 大部分的勾股数的题目很多人都是用for来便利,然后判断是不是平方数什么什么的,这样做的时候要对变量类型和很多细节都是要掌握好的 ...

  8. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  9. C语言 · 勾股数

    勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...

随机推荐

  1. "四号标题"组件:<h4> —— 快应用组件库H-UI

     <import name="h4" src="../Common/ui/h-ui/text/c_h4"></import> < ...

  2. leetcode-0001 两数之和

    题目地址:https://leetcode-cn.com/problems/two-sum/ 1.暴力解法 直接双重循环,枚举出所有可能的解,时间复杂度为O(n^2),空间复杂度为O(1) var t ...

  3. go中的线程的实现模型-P G M的调度

    线程实现模型 go中线程的实现是依靠 P G M M machine的缩写.一个M代表一个内核线程,或称“工作线程” P processor的缩写.一个P代表执行一个Go代码片段所需要的资源(或称“上 ...

  4. Docker 清理命令 删除所有的镜像和容器

    杀死所有正在运行的容器 docker kill $(docker ps -a -q) 删除所有已经停止的容器 docker rm $(docker ps -a -q) 删除所有未打 dangling ...

  5. Centos7_搭建暗网网站

    Tor运行原理 请求方需要使用:洋葱浏览器(Tor Browser)来对暗网网站进行访问 响应放需要使用:Tor协议的的Hidden_service 搭建步骤 更新YUM源: rpm -Uvh htt ...

  6. AJ学IOS(56)网络基础以及如何搭建服务器

    AJ分享,必须精品 一:为什么要学习网络编程 关于这个问题,为什么要学习网络编程,AJ的理解就是,这东西是时代发展的必要,没什么为什么,就是应该学,除非你就是想玩单机,但是就算是单机也会有购买金币之类 ...

  7. 关于gpu版本的tensorflow+anaconda+jupyter的一些安装问题(持续更新)

    关于anaconda安装,虽然清华镜像站资源很丰富,但是不知道是网络还是运气的问题,用这个路径安装的时候总是出现文件丢失.具体表现可能是anaconda prompt 找不到,conda命令无效等问题 ...

  8. 《SQL 反模式》 学习笔记

    第一章 引言 GoF 所著的的<设计模式>,在软件领域引入了"设计模式"(design pattern)的概念. 而后,Andrew Koenig 在 1995 年造了 ...

  9. linux 下强大的 JSON 解析命令 jq

    介绍 jq is like sed for JSON data - you can use it to slice and filter and map and transform structure ...

  10. stand up meeting 12/11/2015

    part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 完成单词释义热度排序:允许用户自主添加释义:完成了button位置的修正(finally)和弹窗的美化:     6 tr ...