题目背景

这是一道模板题

题目描述

给定n,p求1~n中所有整数在模p意义下的乘法逆元。

输入输出格式

输入格式:

一行n,p

输出格式:

n行,第i行表示i在模p意义下的逆元。

输入输出样例

输入样例#1:

10 13

输出样例#1:

1
7
9
10
8
11
2
5
3
4

说明

1≤n≤3×10^6  ,  n<p<20000528

输入保证 p 为质数。

这个题比较适合用线性算法

a*m=1(mod m) 称a是m的乘法逆元。

#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
const int maxn = 3e6 + 5;
ll inv[maxn] = {0, 1};
int main()
{
int n, p;
scanf("%d%d", &n, &p);
printf("1\n");
for (int i = 2; i <= n;i++) {
inv[i] = (ll)p - (p / i) * inv[p % i] % p;
printf("%lld\n", inv[i]);
}
return 0;
}

乘法逆元-洛谷-P3811的更多相关文章

  1. 逆元-P3811 【模板】乘法逆元-洛谷luogu

    https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...

  2. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  3. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  4. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  5. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  6. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  7. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

  8. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

  9. 洛谷P3811乘法逆元

    传送门 线性递推 #include <iostream> #include <cstdio> #include <cstring> #include <alg ...

随机推荐

  1. 洛谷 - P1012 - 拼数 - 排序

    https://www.luogu.org/problemnew/show/P1012 这道水题居然翻车了,还发现不了bug,服气了.并不是空字符一定比不空要好,要取决于替代它的字符的大小.所以还是直 ...

  2. 有哪些值得学习的spring boot开源项目?

    1. awesome-spring-boot 首先给大家介绍的就是Spring Boot 中文索引,这是一个专门收集 Spring Boot 相关资料的开源项目,也有对应的导航页面. 产品主页 htt ...

  3. C语言归并排序(合并排序)算法及代码

    归并排序也称合并排序,其算法思想是将待排序序列分为两部分,依次对分得的两个部分再次使用归并排序,之后再对其进行合并.仅从算法思想上了解归并排序会觉得很抽象,接下来就以对序列A[0], A[l]…, A ...

  4. EXBSGS

    http://210.33.19.103/problem/2183 参考:https://blog.csdn.net/frods/article/details/67639410(里面代码好像不太对) ...

  5. 阻止默认行为是配合passive使用

    在使用lighthouse检测pwa应用时,发现提示下面有下面的警告 默认使用passive:true提高滚动性能并减少崩溃,passive即顺从的,是指它顺从浏览器的默认行为.设置该属性的目的主要是 ...

  6. COPY, RETAIN, ASSIGN , READONLY , READWRITE,STRONG,WEAK,NONATOMIC整理--转

    copy:建立一个索引计数为1的对象,然后释放旧对象 对NSString 对NSString 它指出,在赋值时使用传入值的一份拷贝.拷贝工作由copy方法执行,此属性只对那些实行了NSCopying协 ...

  7. pyton 基础,运算符及字符类型。

    一.python运算符: 二.数据类型: 1.数字: int  :整型 32位机器上一个整数取值范围为-2**31~2**31-1即-2147483648~2147483647 64位机器上一个整数取 ...

  8. Java_面向对象中的this和super用法

    this: 1.使用在类中,可以用来修饰属性.方法.构造器 2.表示当前对象或者是当前正在创建的对象 3.当形参与成员变量重名时,如果在方法内部需要使用成员变量,必须添加 this 来表明该变量时类成 ...

  9. slimScroll的应用(一)

    本类文章依旧是针对初学者来说的,希望大家看到后觉得有用的能给个赞~~ 什么是slimScroll? 一.官网介绍: slimScroll is a small (4.6KB) jQuery plugi ...

  10. 【学习笔记】C++ cout 输出小数点后指定位数

    在C中我们可以使用 printf("%.2lf",a);但在C++中是没有格式操作符的,该如何操作: C++使用setprecision()函数,同时必须包含头文件iomanip, ...