题意:

这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。
思路:线性规划的对偶性 参见《算导》29章

全幺模矩阵可以保证至少有一组整数解

就是a[i,j]取值只为-1,0,1的矩阵

这个线性规划根据对偶性等价于

 const eps=1e-8;
var a:array[..,..]of double;
idx,idy,q:array[..]of longint;
b,c:array[..]of double;
n,m,i,j,op,x,y:longint;
mn,p:double; procedure swap(var x,y:longint);
var t:longint;
begin
t:=x; x:=y; y:=t;
end; procedure povit(x,y:longint);
var i,j,tot:longint;
tmp:double; begin
swap(idx[y],idy[x]);
tmp:=a[x,y]; a[x,y]:=/a[x,y];
for i:= to n do
if y<>i then a[x,i]:=a[x,i]/tmp;
tot:=;
for i:= to n do
if (i<>y)and((a[x,i]>eps)or(a[x,i]<-eps)) then
begin
inc(tot); q[tot]:=i;
end;
for i:= to m do
begin
if (x=i)or((a[i,y]<eps)and(a[i,y]>-eps)) then continue;
for j:= to tot do a[i,q[j]]:=a[i,q[j]]-a[x,q[j]]*a[i,y];
a[i,y]:=-a[i,y]/tmp;
end;
end; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; begin
assign(input,'bzoj1061.in'); reset(input);
assign(output,'bzoj1061.out'); rewrite(output);
randomize;
readln(n,m);
for i:= to n do read(c[i]);
for i:= to m do
begin
readln(x,y,b[i]);
for j:=x to y do a[i,j]:=;
end; for i:= to n do a[,i]:=c[i];
for i:= to m do a[i,]:=b[i];
for i:= to n do idx[i]:=i;
for i:= to m do idy[i]:=i+n;
while true do
begin
x:=; y:=;
for i:= to m do
if (a[i,]<-eps)and((x=)or(random()=)) then x:=i;
if x= then break;
for i:= to n do
if (a[x,i]<-eps)and((y=)or(random()=)) then y:=i;
if y= then break;
povit(x,y);
end;
while true do
begin
x:=; y:=; mn:=1e15;
for i:= to n do
if a[,i]>eps then begin y:=i; break; end;
if y= then break;
for i:= to m do
if (a[i,y]>eps)and(a[i,]/a[i,y]<mn) then
begin
mn:=a[i,]/a[i,y]; x:=i;
end;
if x= then break;
povit(x,y);
end;
writeln(-a[,]::);
close(input);
close(output);
end.

【BZOJ1061】志愿者招募(单纯形,对偶性)的更多相关文章

  1. bzoj1061 志愿者招募

    bzoj1061 志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经 ...

  2. BZOJ-1061 志愿者招募 线性规划转最小费用最大流+数学模型 建模

    本来一眼建模,以为傻逼题,然后发现自己傻逼...根本没想到神奇的数学模型..... 1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 ...

  3. bzoj [Noi2008] 1061 志愿者招募 单纯形

    [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5437  Solved: 3267[Submit][Status][Di ...

  4. bzoj1061-[Noi2008]志愿者招募-单纯形 & 费用流

    有\(n\)天,\(m\)类志愿者,一个第\(i\)类志愿者可以从第\(s_i\)天工作到第\(t_i\)天,第\(i\)天工作的志愿者不少于\(b_i\)个.每一类志愿者都有单价\(c_i\),问满 ...

  5. [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]

    题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...

  6. [NOI2008] [bzoj1061] 志愿者招募

    还是一道费用流的题目.话不多说,进入正题. 题意:给定n个点和m种从l到r覆盖一层的费用,求满足所有点的覆盖层数都大等于权值的最小费用 分析:要做到区间修改,看似比较麻烦. 用差分把区间修改变成单点修 ...

  7. BZOJ 3265 志愿者招募加强版(单纯形)

    3265: 志愿者招募加强版 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 848  Solved: 436[Submit][Status][Disc ...

  8. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  9. BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4813  Solved: 2877[Submit][Stat ...

  10. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

随机推荐

  1. 【学习笔记】深入理解js原型和闭包(18)——补充:上下文环境和作用域的关系

    本系列用了大量的篇幅讲解了上下文环境和作用域,有些人反映这两个是一回儿事.本文就用一个小例子来说明一下,作用域和上下文环境绝对不是一回事儿. 再说明之前,咱们先用简单的语言来概括一下这两个的区别. 0 ...

  2. iOS 应用程序内部国际化,不跟随系统语言

    前言:网络上关于iOS国际化的文章很多,但基本上都是基于跟随系统语言的国际化,笔者就不赘述了-0 – 今天要讲的是不跟随系统的切换语言版本方案,即程序内部的切换语言版本方案. 一.总则: 应用内部语言 ...

  3. codevs 2761 脏话过滤

    时间限制: 1 s  空间限制: 8000 KB  题目等级 : 白银 Silver   题目描述 Description 某论坛希望打造文明论坛,对于每个帖子需要将脏话换成*输出. 脏话有38,25 ...

  4. Win2D 入门教程 VB 中文版

    继续填坑!又一个c#教程变为vb! 这是我翻译的Win2D教程,链接保留了微软原版的. 如果文档有问题,可以在 https://github.com/Nukepayload2/Win2dDocVB发 ...

  5. (转)编码剖析Spring装配基本属性的原理

    http://blog.csdn.net/yerenyuan_pku/article/details/52856465 上回我们已经讲到了Spring依赖注入的第一种方式,现在我们来详解第二种方式,须 ...

  6. Keil Debug (printf) Viewer

    Debug (printf) Viewer Home » µVision Windows » Debug (printf) Viewer The Debug (printf) Viewer windo ...

  7. swift中的as?和as!

    as操作符用来把某个实例转型为另外的类型,由于实例转型可能失败,因此Swift为as操作符提供了两种形式:选项形式as?和强制形式as 选项形式(as?)的操作执行转换并返回期望类型的一个选项值,如果 ...

  8. 11scrapy

    一. Scrapy基础概念 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,我们只需要实现少量的代码,就能够快速的抓取.Scrapy 使用了 Twisted异步网络框架,可以加快我 ...

  9. Java性能调优概述

    目录 Java性能调优概述 性能优化有风险和弊端,性能调优必须有明确的目标,不要为了调优而调优!!!盲目调优,风险远大于收益!!! 程序性能的主要表现点 执行速度:程序的反映是否迅速,响应时间是否足够 ...

  10. 条款31:将文件间的编译依存关系降至最低(Minimize compilation dependencies between files)

    NOTE1: 1.支持“编译依存性最小化”的一般构想是:相依于声明式,不要相依于定义式.基于此构想的两个手段是Handle classes 和 Interface classes. 2.程序库头文件应 ...