题目链接 BZOJ 3675

首先最后的答案和分割的顺序是无关的,

那么就可以考虑DP了。

设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案。

那么$f[i][j] = max(f[i - 1][p] + (s[i] - s[p]) * s[p])$

时间复杂度为$O(kn^{2})$,TLE。

假设$j>k$且在$j$点的决策优于在$k$点的决策,

把不等式移项,我们发现这个DP可以斜率优化。

这样时间复杂度就降到了$O(kn)$。

空间的话滚动数组就可以了。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 1e5 + 10; LL f[2][N], s[N], a[N];
int q[N];
int n, l, r, k;
int tmp = 0; inline LL Y(int k){ return s[k] * s[k] - f[tmp ^ 1][k]; }
inline LL X(int k){ return s[k]; }
inline LL getup(int x1, int x2){ return Y(x1) - Y(x2);}
inline LL getdown(int x1, int x2){ return X(x1) - X(x2);} void solve(){
tmp ^= 1;
l = 0, r = 0, q[r++] = 0;
rep(i, 1, n){
while (l + 1 < r && getup(q[l + 1], q[l]) <= getdown(q[l + 1], q[l]) * s[i]) ++l;
f[tmp][i] = f[tmp ^ 1][q[l]] + (s[i] - s[q[l]]) * s[q[l]];
while (l + 1 < r && getup(i, q[r - 1]) * getdown(q[r - 1], q[r - 2]) <=
getup(q[r - 1], q[r - 2]) * getdown(i, q[r - 1])) --r;
q[r++] = i;
}
} int main(){ scanf("%d%d", &n, &k);
rep(i, 1, n) scanf("%lld", a + i);
s[0] = 0;
rep(i, 1, n) s[i] = s[i - 1] + a[i];
tmp = 0;
rep(i, 1, k) solve();
printf("%lld\n", f[tmp][n]);
return 0; }

BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)的更多相关文章

  1. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  2. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  3. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  4. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  5. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  6. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  7. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  8. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  9. bzoj 3675: [Apio2014]序列分割【斜率优化dp】

    首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来. 这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是 \[ f[i][j]=max { f[k][j]+s[k]*( ...

随机推荐

  1. BCB:内存泄漏检查工具CodeGuard

    一.为什么写这篇东西 自己在使用BCB5写一些程序时需要检查很多东西,例如内存泄漏.资源是否有释放等等,在使用了很多工具后,发觉BCB5本身自带的工具―CodeGuard,非常不错,使用也挺方便的,但 ...

  2. golang 强制重新全部编译

    /home/用户名/.cache 删除缓存试试?? 修改的东西老失败 编译结果总不变 神奇了 go build -a    -x -v加一句-a 强制重新编译.

  3. k8s master init and add node

    目录 一. add google apt-key 二. k8s master init 三. k8s node add to master cluster(use this command when ...

  4. httpClient类

    @SuppressWarnings("finally") public JSONObject doPost(String url, String parms){ if (" ...

  5. 使用iptables缓解DDOS及CC攻击

    使用iptables缓解DDOS及CC攻击 LINUX  追马  7个月前 (02-09)  465浏览  0评论 缓解DDOS攻击 防止SYN攻击,轻量级预防 iptables -N syn-flo ...

  6. 【Java_多线程并发编程】JUC原子类——原子类中的volatile变量和CAS函数

    JUC中的原子类是依靠volatile变量和Unsafe类中的CAS函数实现的. 1. volatile变量的特性 内存可见性(当一个线程修改volatile变量的值后,另一个线程就可以实时看到此变量 ...

  7. ST3使用

    创建新的构建系统 Tools -> Build System -> New Build System... 输入类似的构建指令(首先清除当前的运行程序后再重新运行): { "sh ...

  8. mysql函数总结

    MySQL函数 MySQL数据库提供了很多函数包括: 数学函数:字符串函数:日期和时间函数:条件判断函数:系统信息函数:加密函数:格式化函数: 一.数学函数 数学函数主要用于处理数字,包括整型.浮点数 ...

  9. shell-code-5-函数

    # 函数必须在使用前定义 # 如果不写return,将以最后一条命令运行结果,作为返回值. return后跟数值n(0-255) myFistFunc(){ read a read b return ...

  10. 【LeetCode】Permutations(全排列)

    这道题是LeetCode里的第46道题. 题目要求: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3 ...