刷题总结——bzoj1725(状压dp)
题目:
题目描述
Farmer John 新买了一块长方形的牧场,这块牧场被划分成 N 行 M 列(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。
FJ 打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是 FJ 不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ 还没有决定在哪些土地上种草。
作为一个好奇的农场主,FJ 想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮 FJ 算一下这个总方案数。
输入格式
第 1 行: 两个正整数 N 和 M ,用空格隔开
第 2..N+1 行: 每行包含 M 个用空格隔开的整数,描述了每块土地的状态。输入的第 i+1 行描述了第 i 行的土地。所有整数均为 0 或 1 ,是 1 的话,表示这块土地足够肥沃,0 则表示这块地上不适合种草。
输出格式
输出一个整数,即牧场分配总方案数除以 100,000,000 的余数。
样例数据 1
备注
【样例说明】
土地情况如下:
1 | 1 | 1 |
0 | 1 | 0 |
按下图把肥沃的各块土地编号:
1 | 2 | 3 |
0 | 4 | 0 |
只开辟一块草地的话,有 4 种方案:选 1、2、3、4 中的任一块。
开辟两块草地的话,有 3 种方案:13、14 以及 34。
选三块草地只有一种方案:1、3、4。
再加把牧场荒废的那一种,总方案数为 4+3+1+1=9 种。
【数据范围】
对于 50% 的数据,满足1≤N≤5;1≤M≤6
对于 100% 的数据,满足1≤N≤12;1≤M≤12。
题解:
状压dp裸题,用dp[i][j]表示处理到第i行,第i行状态为j的方案数,dp[1][j]可以预处理出来,每次处理dp[i][k]时先枚举dp[i-1][j]是否符合条件,再看k和j是否符合条件(详细见代码)
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int mod=1e8;
const int N=;
int map[N],dp[N][],n,m,maxx,ans;
void Dp()
{
for(int i=;i<=maxx;i++)
if((i&(i>>))== && (i|map[])==map[])
dp[][i]=;
for(int i=;i<=n;i++)
for(int j=;j<=maxx;j++)
if(dp[i-][j])
for(int k=;k<=maxx;k++)
{
if((k&j)==&&(k&(k>>))==&&(k|map[i])==map[i])
dp[i][k]=(dp[i][k]+dp[i-][j])%mod;
}
for(int i=;i<=maxx;i++)
ans=(ans+dp[n][i])%mod;
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
int a;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&a);
map[i]=(map[i]<<)+a;
}
maxx=;
for(int i=;i<=m;i++)
maxx=(maxx<<);
maxx--;
Dp();
cout<<ans<<endl;
return ;
}
刷题总结——bzoj1725(状压dp)的更多相关文章
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- NOIP2016提高A组 A题 礼物—概率状压dp
题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有n种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种礼物的喜悦值不能重复获得). 每次,店员会 ...
- [杂题]:group(状压DP+轮廓线)
题目描述 $pure$在玩一个战略类游戏.现在有一个士兵方阵,每行有若干士兵,每个士兵属于某个兵种.行的顺序不可改变,且每一行中士兵的顺序也不可改变.但由于每一行都有$C$个位置($C$不小于任一行的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- [NOI2001] 炮兵阵地 (状压Dp经典例题)
如果您的电脑比较优秀能在 1sec 内跑过 2^1000 的时间复杂度,不妨你可以尝试一下,其实实际时间复杂度远远少于 2^1000,作为骗分不错的选择QAQ,然后我们来分析一下正解: 很显然此题是一 ...
- [Luogu P2831] 愤怒的小鸟 (状压DP)
题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...
- 状压dp学习笔记(紫例题集)
P3451旅游景点 Tourist Attractions 这个代码其实不算是正规题解的(因为我蒟蒻)是在我们的hzoj上内存限制324MIB情况下过掉的,而且经过研究感觉不太能用滚动数组,所以那这个 ...
- 刷题向》关于第一篇状压DP BZOJ1087 (EASY+)
这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合 ...
- 刷题总结——树有几多愁(51nod1673 虚树+状压dp+贪心)
题目: lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输 ...
随机推荐
- kettle数据同步方法
1.实时性要求不高,采用全删全插的方式(适合于维度表.大数据量表) 2.有时间维度,直接从事实表同步的数据,可以采用根据时间字段进行筛选,增量同步.这个网上有很多例子,就不重复写了. 3.没有时间维度 ...
- Python学习日志9月14日
今天早晨又没有专心致志的学习,我感觉我可能是累了,需要减轻学习的程度来调整一下咯.这几天装电脑弄的昏天暗地的,身体有点吃不消了.时间真是神奇的魔法,这半个月来,每隔几天都有想要改变策略的想法.今天早晨 ...
- C++通讯录
C++通讯录1.0 历时一天,终于把通讯录写好了. 项目要求: 编写一个通讯录管理程序. 有一已存在的通讯录文件,数据内容为各联系人信息. 每个联系人信息的组成部分为: 姓名.电话号码和住址 等个人基 ...
- 【转】Spring, MyBatis 多数据源的配置和管理
同一个项目有时会涉及到多个数据库,也就是多数据源.多数据源又可以分为两种情况: 1)两个或多个数据库没有相关性,各自独立,其实这种可以作为两个项目来开发.比如在游戏开发中一个数据库是平台数据库,其它还 ...
- WINDOWS-基础:WINDOWS常用API
1.窗口信息 //MS 为我们提供了打开特定桌面和枚举桌面窗口的函数. hDesk=OpenDesktop(lpszDesktop,,FALSE,DESKTOP_ENUMERATE); //打开我们默 ...
- VC-基础:VC中得到当前系统的时间和日期
得到当前时间的方法一般都是得到从1900年0点0分到现在的秒数,然后转为年月日时分秒的形式得到当前的时间(时分秒).主要方法如下: 1)使用CRT函数 C++代码 ]; time_t nowtim ...
- MYSQL - 限制资源的使用
MYSQL - 限制资源的使用 1.MAX_QUERIES_PER_HOUR 用来限制用户每小时运行的查询数量 mysql> grant select on *.* to 'cu_blog'@' ...
- Nginx代理tcp端口实现负载均衡
Nginx代理tcp端口实现负载均衡 1.修改配置文件 vi /etc/nginx/nginx.conf 添加如下配置: stream { ###XXX upstream notify { has ...
- iOS开发遇到的坑之三--使用asi框架在xcode下正常运行,但是打包时却不能进行网络访问
前言: 前两篇博客遇到的问题是前几天在实验室开发的时候遇到的,花了两三天时间在上面,今天突然心血来潮,想把这些”坑”写下来,所以才有了这两篇写的很丑的博客随笔 今天在开发时又遇到一个问题,那就是标题所 ...
- 两种常见JS面向象写法
基于构造函数 function Circle(r) { this.r = r; } Circle.PI = 3.14159; Circle.prototype.area = function() { ...