poj1930 数论
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 1258 | Accepted: 379 |
Description
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).
Input
Output
Sample Input
0.2...
0.20...
0.474612399...
0
Sample Output
2/9
1/5
1186531/2500000 题意:最后一位表示循环节,
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> #define inf 1000000000
#define ll long long using namespace std;
char ch[];
ll ans1,ans2;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
void solve(ll a,ll b,ll c,ll d)
{
ll t1=a*d+b*c,t2=b*d,t=gcd(t1,t2);
t1/=t;t2/=t;
if(t2<ans2)ans2=t2,ans1=t1;
}
int main()
{
while(~scanf("%s",ch+))
{
ans2=(ll)1e60;
int n=strlen(ch+);
if(n==)break;
ll b=,a=;
for(int i=;i<=n-;i++)
a=a*+ch[i]-'',b*=;//三个.
ll t=b/*;
for(ll i=;i<=b;i*=,t=t+(b/i)*)
solve(a/i,b/i,a%i,t);
printf("%lld/%lld\n",ans1,ans2);
}
}
poj1930 数论的更多相关文章
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- hdu5072 Coprime (2014鞍山区域赛C题)(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
随机推荐
- Codeforces Round #316 (Div. 2) B Simple Game 贪心
贪心,如果m分成的两个区间长度不相等,那么选长的那个区间最接近m的位置,否则选m-1位置,特判一下n等于1的情况 #include<bits/stdc++.h> using namespa ...
- 闭包和OC的block的本质
“闭包” 一词来源于以下两者的结合:要执行的代码块(由于自由变量被包含在代码块中,这些自由变量以及它们引用的对象没有被释放)和为自由变量提供绑定的计算环境(作用域). http://blog.csdn ...
- springboot-i18n国际化
简介 In computing, internationalization and localization are means of adapting computer software to di ...
- iOS 设计模式
很赞的总结 iOS Design Patterns 中文版 IOS设计模式之一(MVC模式,单例模式) IOS设计模式之二(门面模式,装饰器模式) IOS设计模式之三(适配器模式,观察者模式) IOS ...
- Ukulele 常用和弦
- 解析IPV4报文 和IPV6 报文的 checksum
解析IPV4报文和IPV6报文的checksum的算法: 校验和(checksum)算法,简单的说就是16位累加的反码运算: 计算函数如下: 我们在计算时是主机字节序,计算的结果封装成IP包时是网络字 ...
- vue父组件获取子组件页面的数组 以城市三级联动为例
父组件调用子组件 <Cselect ref="registerAddress"></Cselect> import Cselect from '../../ ...
- Linux基础学习-Postfix与Dovecot部署邮件系统
电子邮件系统 电子邮件系统是我们在日常工作.生活中最常用的一种网络服务. 部署基础的电子邮件系统 [root@qdlinux ~]# yum install bind-chroot -y [root@ ...
- 命令行发送UDP
https://www.cnblogs.com/Dennis-mi/articles/6866762.html: 如果往本地UDP端口發送數據,那麼可以使用以下命令:echo “hello” > ...
- input动态模糊查询的实现方式
最近在用jQuery实现动态模糊查询的时候,找了挺久都没有找到像Vue.js的watch属性这么好用的动态模糊查询方法.就分享一下目前遇到的坑和可以实现动态查询的几种方式. 1.jQuery的chan ...
