Dead Fraction
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 1258   Accepted: 379

Description

Mike is frantically scrambling to finish his thesis at the last minute. He needs to assemble all his research notes into vaguely coherent form in the next 3 days. Unfortunately, he notices that he had been extremely sloppy in his calculations. Whenever he needed to perform arithmetic, he just plugged it into a calculator and scribbled down as much of the answer as he felt was relevant. Whenever a repeating fraction was displayed, Mike simply reccorded the first few digits followed by "...". For instance, instead of "1/3" he might have written down "0.3333...". Unfortunately, his results require exact fractions! He doesn't have time to redo every calculation, so he needs you to write a program (and FAST!) to automatically deduce the original fractions. 
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).

Input

There are several test cases. For each test case there is one line of input of the form "0.dddd..." where dddd is a string of 1 to 9 digits, not all zero. A line containing 0 follows the last case.

Output

For each case, output the original fraction.

Sample Input

0.2...
0.20...
0.474612399...
0

Sample Output

2/9
1/5
1186531/2500000 题意:最后一位表示循环节,
 #include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> #define inf 1000000000
#define ll long long using namespace std;
char ch[];
ll ans1,ans2;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
void solve(ll a,ll b,ll c,ll d)
{
ll t1=a*d+b*c,t2=b*d,t=gcd(t1,t2);
t1/=t;t2/=t;
if(t2<ans2)ans2=t2,ans1=t1;
}
int main()
{
while(~scanf("%s",ch+))
{
ans2=(ll)1e60;
int n=strlen(ch+);
if(n==)break;
ll b=,a=;
for(int i=;i<=n-;i++)
a=a*+ch[i]-'',b*=;//三个.
ll t=b/*;
for(ll i=;i<=b;i*=,t=t+(b/i)*)
solve(a/i,b/i,a%i,t);
printf("%lld/%lld\n",ans1,ans2);
}
}
 
 

poj1930 数论的更多相关文章

  1. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  2. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  3. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  4. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. Codeforces Round #316 (Div. 2) B Simple Game 贪心

    贪心,如果m分成的两个区间长度不相等,那么选长的那个区间最接近m的位置,否则选m-1位置,特判一下n等于1的情况 #include<bits/stdc++.h> using namespa ...

  2. 闭包和OC的block的本质

    “闭包” 一词来源于以下两者的结合:要执行的代码块(由于自由变量被包含在代码块中,这些自由变量以及它们引用的对象没有被释放)和为自由变量提供绑定的计算环境(作用域). http://blog.csdn ...

  3. springboot-i18n国际化

    简介 In computing, internationalization and localization are means of adapting computer software to di ...

  4. iOS 设计模式

    很赞的总结 iOS Design Patterns 中文版 IOS设计模式之一(MVC模式,单例模式) IOS设计模式之二(门面模式,装饰器模式) IOS设计模式之三(适配器模式,观察者模式) IOS ...

  5. Ukulele 常用和弦

  6. 解析IPV4报文 和IPV6 报文的 checksum

    解析IPV4报文和IPV6报文的checksum的算法: 校验和(checksum)算法,简单的说就是16位累加的反码运算: 计算函数如下: 我们在计算时是主机字节序,计算的结果封装成IP包时是网络字 ...

  7. vue父组件获取子组件页面的数组 以城市三级联动为例

    父组件调用子组件 <Cselect ref="registerAddress"></Cselect> import Cselect from '../../ ...

  8. Linux基础学习-Postfix与Dovecot部署邮件系统

    电子邮件系统 电子邮件系统是我们在日常工作.生活中最常用的一种网络服务. 部署基础的电子邮件系统 [root@qdlinux ~]# yum install bind-chroot -y [root@ ...

  9. 命令行发送UDP

    https://www.cnblogs.com/Dennis-mi/articles/6866762.html: 如果往本地UDP端口發送數據,那麼可以使用以下命令:echo “hello” > ...

  10. input动态模糊查询的实现方式

    最近在用jQuery实现动态模糊查询的时候,找了挺久都没有找到像Vue.js的watch属性这么好用的动态模糊查询方法.就分享一下目前遇到的坑和可以实现动态查询的几种方式. 1.jQuery的chan ...