Description

有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000。现在Farmer John要把这些奶牛分成若干段,定义每段的不河蟹度为:

若这段里有k个不同的数,那不河蟹度为k*k。那总的不河蟹度就是所有段的不河蟹度的总和。

Input

第一行:两个整数N,M

第2..N+1行:N个整数代表每个奶牛的编号

Output

一个整数,代表最小不河蟹度

Sample Input

13 4
1
2
1
3
2
2
3
4
3
4
3
1
4

Sample Output

11

题解

不会做T T看了半天题解

这题首先可以发现最差情况是将数列a分成n段,代价为n

那么一定不能有划分出的一段超过√n个

这样一来每次的转移就是在√n个内了f[i]=min{f[b[j]]+j*j},j<=√n

其中b[j]表示的是从b[j]+1开始到i,共有j个不同的数字

对于b数组的维护,可以随意脑补一下

比如用pre[a[i]]记录a[i]上次出现的位置,c[j]记录b[j]+1到i的不同数字个数

这样每次i++时,先更新c数组,即如果pre[a[i]]<=b[i],那就无视,不然c[j]++

如果c[j]++了,那么就要从b[i]+1开始找一个只在b[j]+1到i出现一次的,删到它为止

复杂度好像应该是n√n了吧

对于所有,下限至少是n是可以确定的,因为每个单独一段,即可。

还有这个m是没有什么用的,那么我可以想如果一段的不同个数已经大于√n

那么其花费已经为n是没有意义的,但是这里的√n,是向下取整的所以还是

有意义的,可以取到

所以只需要记录不同的√n的转移即可,那么如何维护,

是根号n维护对吧,然后也是根号n转移即可,很好想的。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define N 207
#define M 40007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int a[M],f[M];
int b[N],cnt[N];
int pre[M]; int main()
{
memset(f,/,sizeof(f));
memset(pre,-,sizeof(pre));
n=read();m=read();
int tot=;
for(int i=;i<=n;i++)
{
int x=read();
if(x!=a[tot])a[++tot]=x;
}
n=tot;
m=trunc(sqrt(n));
f[]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(pre[a[i]]<=b[j])cnt[j]++;
pre[a[i]]=i;
for(int j=;j<=m;j++)
if(cnt[j]>j)
{
int t=b[j]+;
while(pre[a[t]]>t)t++;
b[j]=t;cnt[j]--;
}
for(int j=;j<=m;j++)
f[i]=min(f[i],f[b[j]]+j*j);
}
printf("%d",f[n]);
}

bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维的更多相关文章

  1. 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...

  2. BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生

    令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$ ...

  3. [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)

    传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...

  4. DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 419  Solve ...

  5. BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP

    BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= ...

  6. bzoj:1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

  7. [bzoj1587] [Usaco2009 Mar]Cleaning Up 打扫卫生

    首先(看题解)可得...分成的任意一段中的不同颜色个数都<=根号n...不然的话直接分成n段会更优= = 然后就好做多了.. 先预处理出对于每头牛i,和它颜色相同的前一头和后一头牛的位置. 假设 ...

  8. 【BZOJ】1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    [算法]DP+数学优化 [题意]把n个1~m的数字分成k段,每段的价值为段内不同数字个数的平方,求最小总价值.n,m,ai<=40000 [题解] 参考自:WerKeyTom_FTD 令f[i] ...

  9. bzoj 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生【dp】

    参考:http://hzwer.com/3917.html 好神啊 注意到如果分成n段,那么答案为n,所以每一段最大值为\( \sqrt{n} \) 先把相邻并且值相等的弃掉 设f[i]为到i的最小答 ...

随机推荐

  1. LintCode 30插入区间

    问题 给出一个无重叠的按照区间起始端点排序的区间列表. 在列表中插入一个新的区间,你要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间). 样例 插入区间[2, 5] 到 [[1,2], ...

  2. UWP中获取Encoding.Default

    Encoding.GetEncoding(0); 即可

  3. SVN中的check out与export的区别

    http://blog.csdn.net/zndxlxm/article/details/7763116 check out跟check in对应,export跟import对应. check out ...

  4. 数据库:SQL Server自增长列的编号

    SQL Server表中的自动编号ID重新开始排列 说法一: 有两种方法: 方法1: truncate table 你的表名 --这样不但将数据删除,而且可以重新置位identity属性的字段. 方法 ...

  5. CVE-2010-3333

    环境 windows xp sp3 office 2003 sp0 windbg ollydbg vmware 12.0 0x00 RTF格式 RTF是Rich TextFormat的缩写,意即富文本 ...

  6. Bootstrap 网格系统(Grid System)实例3

    Bootstrap 网格系统(Grid System)实例:堆叠水平 <!DOCTYPE html><html><head><meta http-equiv= ...

  7. http post get 同步异步

    下面首先介绍一下一些基本的概念---同步请求,异步请求,GET请求,POST请求. 1.同步请求从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作.也 ...

  8. vue 使用element-ui实现城市三级联动

    <template> <div> <el-select v-model="prov" style="width:167px;margin-r ...

  9. javascript变量名命名规则

    1. js变量名可以包含数字,字母,$及_,不能以数字开头. 2. js变量可以使用中文,但是最好不要这么命名,以避免不必要的麻烦.

  10. 【DB_MySQL】查询语句中各子句的执行顺序

    1. FROM 指明查询来源 2. WHERE筛选元组 3. GROUP BY进行分组 4. HAVING 筛选分组 5. SELECT 投影出指定的字段列 6. ORDER BY 对结果集排序 7. ...