[Luogu1848][USACO12OPEN]书架Bookshelf DP+set+决策单调性
题目链接:https://www.luogu.org/problem/show?pid=1848
题目要求书必须按顺序放,其实就是要求是连续的一段。于是就有DP方程$$f[i]=min\{f[j]+max\{h_k\}\}$$其中的k以及j的关系应该满足$$\sum_{k=j+1}^iw_k<=L$$
这样是$O(n^2)$的肯定不行。发现对于一个$h[i]$到前一个比它大的$h[j]$之间,都被$h[i]$所影响这,且这些影响某一段区间的关键点是单调下降的,同时发现$f[j]$总不会比$f[j+1]$更劣,证明显然。
于是我们只需要维护这样一个关键点集就可以从中取得最优答案。观察DP方程中的条件限制,发现前面的点可能会被从前往后舍去,而后面的点可以把之前的点给覆盖掉,想到用单调队列维护。
队首元素的删除用$w$的区间和来维护,队尾元素则直接用新加入的$h[i]$不断合并掉就好了。
然后对于每一个当前合法的关键点,我们都需要记录其对应的答案,每次取最小值。不仅需要插入,同时还需要从中删除掉不合法的答案。我们可以用双堆或者平衡树来做,当然set也是可以的。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
typedef long long ll;
int inline readint(){
int Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
int n,m;
int h[],w[],la;
ll f[],sum;
int q[],head,tail;
bool in[];
multiset <ll> s;
// f[i]=f[j]+max(h[k]) sigma(w[k])<=L k:i->j+1
int main(){
n=readint();
m=readint();
la=head=q[]=;
tail=sum=;
in[]=true;
for(int i=;i<=n;i++){
h[i]=readint();
w[i]=readint();
sum+=w[i];
while(sum>m){
if(in[la]){
s.erase(f[la-]+h[la]);
in[la]=false;
head++;
}
else h[la]=h[la-];
sum-=w[la++];
}
if(!in[la]){
h[la]=h[la-];
s.insert(f[la-]+h[la]);
q[--head]=la;
in[la]=true;
}
q[++tail]=i;
s.insert(f[i-]+h[i]);
in[i]=true;
while(head<=tail&&h[q[tail]]<=h[i]){
s.erase(f[q[tail]-]+h[q[tail]]);
in[q[tail]]=false;
tail--;
}
h[q[++tail]]=h[i];
s.insert(f[q[tail]-]+h[q[tail]]);
in[q[tail]]=true;
f[i]=*s.begin();
}
printf("%lld\n",f[n]);
return ;
}
[Luogu1848][USACO12OPEN]书架Bookshelf DP+set+决策单调性的更多相关文章
- [BZOJ2739]最远点(DP+分治+决策单调性)
根据旋转卡壳,当逆时针遍历点时,相应的最远点也逆时针转动,满足决策单调性.于是倍长成链,分治优化DP即可,复杂度O(n^2). #include<cstdio> #include<a ...
- luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性
LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...
- [USACO12OPEN]书架Bookshelf
Description 当农夫约翰闲的没事干的时候,他喜欢坐下来看书.多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书. 每本书 i ...
- p1848 [USACO12OPEN]书架Bookshelf
分析 单调队列优化dp即可 正确性显然,详见代码 代码 #include<bits/stdc++.h> using namespace std; #define int long long ...
- BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)
设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移.容易想到这个dp有决策单调性,感性证明一下比较显然.如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组 ...
- CF321E Ciel and Gondolas 【决策单调性dp】
题目链接 CF321E 题解 题意:将\(n\)个人分成\(K\)段,每段的人两两之间产生代价,求最小代价和 容易设\(f[k][i]\)表示前\(i\)个人分成\(k\)段的最小代价和 设\(val ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...
- [loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治
https://loj.ac/problem/6039 我们设dp[i][j]表示考虑所有价值小于等于i的物品,带了j块钱的最大吸引力. 对于ci相同的物品,我们一定是从大到小选k个物品,又发现最大的 ...
随机推荐
- udhcp源码详解(五) 之DHCP包--options字段
中间有很长一段时间没有更新udhcp源码详解的博客,主要是源码里的函数太多,不知道要不要一个一个讲下去,要知道讲DHCP的实现理论的话一篇博文也就可以大致的讲完,但实现的源码却要关心很多的问题,比如说 ...
- 嵌入式开发之davinci--- 8148 中dsp在dsp_drv.c中的processdata()加算法出现下边缘条纹问题
(1)问题原因 dsp在alglink_priv.c中做灰度处理发现,下面出现条纹,后面发现是cache 缓存没及时写进内存问题 (2)解决办法 for(frameId=0; frameId<f ...
- 基于开源项目的在线网络视频直播项目---pc端的推流
https://github.com/winlinvip/simple-rtmp-server/issues/66 https://github.com/justinmakaila/iOS-Frame ...
- <转>bash: qmake: command not found...
昨天发现qmake这个命令不能使用,查了一些资料,大部分都说是环境变量没有设置好: Qt默认安装是在 /opt/qt-xxxx/qt/bin 或者 /opt/qt-xxx/bin 下.实在不行就查找 ...
- WinPE:创建 USB 可引导驱动器
https://msdn.microsoft.com/zh-cn/library/windows/hardware/dn938386(v=vs.85).aspx
- Strus2中关于ValueStack详解
什么是ValueStack 它是一个接口com.opensymphony.xwork2.util.ValueStack.我们使用它是将其做为一个容器,用于携带action数据到页面.在页面上通过ogn ...
- SetLocalTime API函数设置本地时间(DateTimeToSystemTime函数,把TDateTime转换成TSystemTime)
procedure setLocalDateTime(Value: TDateTime);var lSystemDateTime: TSystemTime;begin DateTimeToSyst ...
- bzoj3330: [BeiJing2013]分数
口胡 题目hint都给你是一个三分函数了 还不会上三分套三分吗 exp函数又卡 精度又卡 什么sb毒瘤题 浪费时间
- 【转】Java并发编程:Synchronized及其实现原理
一.Synchronized的基本使用 Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法.Synchronized的作用主要有三个:(1)确保线程互斥的访问同步 ...
- 自定义View分类与流程
自定义View分类与流程(进阶篇)## 转载出处: http://www.gcssloop.com/customview/CustomViewProcess/ 自定义View绘制流程函数调用链(简化版 ...