[bzoj4987]Tree_树形dp
Tree bzoj-4987
题目大意:给定一颗n个点的有边权的树,选出k个点,使得:$\sum\limits_{i=1}^{k-1}dis_idis_j$最小。
注释:$1\le n\le 3000$。
想法:
我们考虑答案的可能形态:
肯定是一颗大小为k的联通子树这是显然的。
那么我们考虑如果把答案的$dis_{k-1}dis_k$加上,就是每条边都算两遍。
现在把最后一项去掉了,我们当然要好好利用,所以我们的答案一定是所有边权*2-直径长度。
这样就可以$dp$了:
状态:$dp[i][j][l]$在$i$的子树中,选了$j$个点,其中有$l$个点所谓直径的端点。
转移就用背包的转移即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 3010
using namespace std;
int head[N],to[N<<1],len[N<<1],next[N<<1],cnt,si[N],f[N][N][3];
inline void add(int x,int y,int z)
{
to[++cnt]=y,len[cnt]=z,next[cnt]=head[x],head[x]=cnt;
}
void dfs(int x,int fa)
{
int i,j,k,l,m;
si[x]=1,f[x][0][0]=f[x][0][1]=0;
for(i=head[x];i;i=next[i])
{
if(to[i]==fa) continue;
dfs(to[i],x);
for(j=si[x]-1;~j;j--)
for(k=si[to[i]]-1;~k;k--)
for(l=2;~l;l--)
for(m=l;~m;m--)
f[x][j+k+1][l]=min(f[x][j+k+1][l],f[x][j][l-m]+f[to[i]][k][m]+len[i]*(2-(m&1)));
si[x]+=si[to[i]];
}
}
int main()
{
int n,k,x,y,z,ans=1<<30;
scanf("%d%d",&n,&k);
for(int i=1;i<n;i++)
scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
memset(f,0x3f,sizeof(f));
dfs(1,0);
for(int i=1;i<=n;i++)
for(int j=0;j<=2;j++)
ans=min(ans,f[i][k-1][j]);
printf("%d\n",ans);
return 0;
}
小结:好题!
[bzoj4987]Tree_树形dp的更多相关文章
- BZOJ4987:Tree(树形DP)
Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和需要 ...
- bzoj4987: Tree(树形dp)
Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一行两个正整数n,k,表示数的顶点数和 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
随机推荐
- JavaScript--DOM方法
getElementsByName()方法 返回带有指定名称的节点对象的集合. 语法: document.getElementsByName(name) 与getElementById() 方法不同的 ...
- 【css】回想下经典的布局
看到这张图相信大多数人都很熟悉,这曾经是一种经典的布局方式,一道经典的面试题,一般形如"实现一个布局,左右固定宽度,中间自适应".随着岁月的流转,时光的交替(颇有一种“天下风云出我 ...
- 国内使用pip / pip with GFW / pip 镜像
sudo pip install -i https://pypi.doubanio.com/simple/ YOUR_PACKAGE_NAME --trusted-host pypi.doubanio ...
- P1400 塔
题目描述 有N(2<=N<=600000)块砖,要搭一个N层的塔,要求:如果砖A在砖B上面,那么A不能比B的长度+D要长.问有几种方法,输出 答案 mod 1000000009的值. 输入 ...
- python--12、数据库进阶
SQL语句关键词: #再次不做过多介绍 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 使用SELECT查询数据以及. #示例中department为部门表 ...
- 鼠标拖拽移动Java界面组件
默认的,Frame或者JFrame自身已经实现了鼠标拖拽标题栏移动窗口的功能. 只是,当你不满意java的JFrame样式,隐藏了标题栏和边框,又或者干脆直接使用JWindow,那你又该怎么实现鼠标拖 ...
- Android 6.0权限分组
Android系统从6.0开始将权限分为一般权限和危险权限,一般权限指不涉及用户隐私的一些权限,比如Internet权限.危险权限指涉及获取用户隐私的一些操作所需要的权限,比如读取用户地理位置的权限. ...
- phpcms标签用法(转)
1.显示指定catid的栏目名称和链接 {$CATEGORYS[25]['catname']} {$CATEGORYS[25]['url']} 获取父栏目id/获取父栏目名称 $CATEGORY[ ...
- 预测学习、深度生成式模型、DcGAN、应用案例、相关paper
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- Python的伪造数据库:Faker
faker 是一个可以让你生成伪造数据的Python包,在软件需求.开发.测试过程中常常需要利用一些假数据来做测试,这种时候就可以使用 Faker 来伪造数据从而用来测试. 一.Faker安装 pip ...