【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)
【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)
题面
万恶的BZOJ因为权限题的原因而做不了。。。
我要良心的提供题面
Description
从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。
Input
输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。
Output
输出只有一行一个数:最小的运输费用。
Sample Input
9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1
Sample Output
26
题解
斜率优化大火题
很容易想到\(O(n^{2})\)暴力枚举建在哪里
然后推一下式子
很容易搞出斜率优化
然后没了。。。。(我是真的懒得手撸公式了。。。)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define MAX 21000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int h,t,Q[MAX];
int f[MAX],n,w[MAX],dis[MAX],s[MAX],cc[MAX],ans=2*(1e9);
int calc(int i,int j)//在i位置和j位置建造锯木厂
{
return s[n]-(w[i]-w[j])*(cc[n]-cc[i])-w[j]*(cc[n]-cc[j]);
}
double count(int j,int k)
{
return 1.0*(1.0*w[j]*cc[j]-1.0*w[k]*cc[k])/(w[j]-w[k]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)w[i]=w[i-1]+read(),dis[i]=read();n++;
for(int i=1;i<=n;++i)f[i]=2*(1e9),cc[i]=cc[i-1]+dis[i-1];
for(int i=1;i<=n;++i)s[i]=s[i-1]+w[i-1]*dis[i-1];
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
ans=min(ans,f[i]=min(f[i],s[n]-(w[i]-w[j])*(cc[n]-cc[i])-w[j]*(cc[n]-cc[j])));
*/
for(int i=1;i<=n;++i)
{
while(h<t&&count(Q[h],Q[h+1])<=cc[i])h++;
int j=Q[h];
ans=min(ans,f[i]=calc(i,j));
while(h<t&&count(Q[t-1],Q[t])>=count(Q[t-1],i))t--;
Q[++t]=i;
}
printf("%d\n",ans);
return 0;
}
【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)的更多相关文章
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- cogs 362. [CEOI2004]锯木厂选址
★★★ 输入文件:two.in 输出文件:two.out 简单对比 时间限制:0.1 s 内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
随机推荐
- HTTP入门
请求报文图解: 请求报文 图片 响应报文图解: 响应报文
- Docker 中国官方镜像加速
参考:https://www.docker-cn.com/registry-mirror 通过 Docker 官方镜像加速,中国区用户能够快速访问最流行的 Docker 镜像.该镜像托管于中国大陆,本 ...
- Action里面的自带的字段的含义
- Web API 之承载宿主IIS,SelfHost,OwinSelfHost
Asp.Net WebAPI这个大家应该都不陌生,在我的理解范围中就是数据提供和交换的一个方式,相比与WCF,WS而言,更加的简单轻量,但是在部署web Api的时候,一般往往需要与a ...
- C#将制定文件夹下的PDF文件合并成一个并输出至指定路径
/// <summary> /// 将源路径下的PDF合并至目标路径下 /// </summary> /// <param name="SourcePath&q ...
- JDBC数据库操作
JDBC: 创建SQL语句对象 Statement statement = (Statement) con.createStatement() ; 调用执行 statement. ...
- GB 标准
std::map<int, std::string> GB2261 = { { 0,"未知的性别" }, { 1,"男性" }, { 2," ...
- SpringBoot,Security4, redis共享session,分布式SESSION并发控制,同账号只能登录一次
由于集成了spring session ,redis 共享session,导致SpringSecurity单节点的session并发控制失效, springSession 号称 无缝整合httpses ...
- java 集合框架(三)Collection
一.概述 Collection是集合框架的根接口.不同的集合具有不同的特性,比如有的集合可以有重复元素,有的不可以,有的可以排序,有的不可排序,如此等等,而Collection作为集合的根接口,它规范 ...
- equals 与 == 区别及用法
==: 1. ==操作符专门用来比较两个变量的值是否相等,也就是用于比较变量所对应的内存中所存储的数值是否相同: 2.如果要比较两个变量是否指向同一个对象,这时候就需要用==操作符进行比较: 注意:= ...