【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)

题面

万恶的BZOJ因为权限题的原因而做不了。。。

我要良心的提供题面

Description

从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。

木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。

Input

输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。

Output

输出只有一行一个数:最小的运输费用。

Sample Input

9

1 2

2 1

3 3

1 1

3 2

1 6

2 1

1 2

1 1

Sample Output

26

题解

斜率优化大火题

很容易想到\(O(n^{2})\)暴力枚举建在哪里

然后推一下式子

很容易搞出斜率优化

然后没了。。。。(我是真的懒得手撸公式了。。。)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define MAX 21000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int h,t,Q[MAX];
int f[MAX],n,w[MAX],dis[MAX],s[MAX],cc[MAX],ans=2*(1e9);
int calc(int i,int j)//在i位置和j位置建造锯木厂
{
return s[n]-(w[i]-w[j])*(cc[n]-cc[i])-w[j]*(cc[n]-cc[j]);
}
double count(int j,int k)
{
return 1.0*(1.0*w[j]*cc[j]-1.0*w[k]*cc[k])/(w[j]-w[k]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)w[i]=w[i-1]+read(),dis[i]=read();n++;
for(int i=1;i<=n;++i)f[i]=2*(1e9),cc[i]=cc[i-1]+dis[i-1];
for(int i=1;i<=n;++i)s[i]=s[i-1]+w[i-1]*dis[i-1];
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
ans=min(ans,f[i]=min(f[i],s[n]-(w[i]-w[j])*(cc[n]-cc[i])-w[j]*(cc[n]-cc[j])));
*/
for(int i=1;i<=n;++i)
{
while(h<t&&count(Q[h],Q[h+1])<=cc[i])h++;
int j=Q[h];
ans=min(ans,f[i]=calc(i,j));
while(h<t&&count(Q[t-1],Q[t])>=count(Q[t-1],i))t--;
Q[++t]=i;
}
printf("%d\n",ans);
return 0;
}

【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)的更多相关文章

  1. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  2. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

  3. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  4. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  5. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  6. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  7. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  8. LG4360 [CEOI2004]锯木厂选址

    题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...

  9. cogs 362. [CEOI2004]锯木厂选址

    ★★★   输入文件:two.in   输出文件:two.out   简单对比 时间限制:0.1 s   内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...

  10. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

随机推荐

  1. XAMPP简介、安转、使用

    虽然没有写Mac安装方法及使用, 但方法也都大相径庭, 殊途同归而已. XAMPP简介 XAMPP是一款开源.免费的网络服务器软件,经过简单安装后,就可以在个人电脑上搭建服务器环境.本文为大家介绍Wi ...

  2. 04-PHP-redis

    [Redis] 先安装tcl: yum install tcl   [下载和安装] 官网http://redis.io/  下载最新的稳定版本,这里是3.2.0, 然后解压文件并进入. $ sudo ...

  3. Linux下LNMP启动不了的问题总结(2015.05)

    [1] *****@*****-VirtualBox:~$ sudo /etc/init.d/mysql.server start Starting MySQL * Couldn't find MyS ...

  4. 如何为MySQL服务器和客户机启用SSL

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: mysql5.7后有ssl新特性 自己搭建mysql ent ...

  5. Django开发基础----创建项目/应用

    环境: 1.python  3.6.2 2.安装django:pip install django==1.10.3 *下面以开发一个简单的用户签到系统介绍Django的使用 创建Django项目: 命 ...

  6. Spring MVC中Session的正确用法之我见

    Spring MVC是个非常优秀的框架,其优秀之处继承自Spring本身依赖注入(Dependency Injection)的强大的模块化和可配置性,其设计处处透露着易用性.可复用性与易集成性.优良的 ...

  7. centos/linux下的安装mysql

    1.从yum 下面下载mysql数据库 yum -y install mysql-server 2.查询该mysql是否安装完成 rpm -qa|grep mysql-server 出现如下图所示标明 ...

  8. 使用Vue和thrift建立前后端交互的demo

    初识thrift thrift 是 facebook 于2007年开发的一款跨平台 RPC(Remote Procedure Call) 软件框架, 它可以在多种平台上进行无缝交互,数据传输使用二进制 ...

  9. EmguCV中图像类型进行转换

    1.       Bitmap:类型不在 Emgucv命名空间中 2.       Image<TColor, TDepth> 3.       Mat: 4.       UMat: 高 ...

  10. UVA - 10285 Longest Run on a Snowboard (线性DP)

    思路:d[x][y]表示以(x, y)作为起点能得到的最长递减序列,转移方程d[x][y] = max(d[px][py] + 1),此处(px, py)是它的相邻位置并且该位置的值小于(x, y)处 ...