4555: [Tjoi2016&Heoi2016]求和

题意:求$$

\sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \

S是第二类斯特林数

\[
***

首先你要把这个组合计数肝出来,~~于是我去翻了一波《组合数学》~~

*用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法*

</br>
###组合计数

**斯特林数** $S(n,i)$表示将n个不同元素划分成i个相同集合非空的方案数
**Bell数** $B(n)=\sum\limits_{i=0}^n S(n,i)$也就是分成任意个相同的集合
有一个递推式
\]

B(n) = \sum_{i=0}^{n-1} \binom{n-1}{n-1-i}B(i) = \sum_{i=0}^{n-1} \binom{n-1}{i}B(i)

\[$推导$:
考虑和第一个元素在同一个集合的元素有几个,剩下的是子问题
或者这么想,因为每个集合相同,我们规定第一个元素在一个集合后这个集合就不相同了,剩下的元素分入这个不相同的集合或者成为子问题
</br>

$S'(n,i)=S(n,i)*i!$就是**集合不相同**啦,
\]

B'(n) = \sum_{i=1}^n \binom{n}{i}B'(n-i)

\[$推导$:
因为每个集合都不相同,我们没有必要规定第一个元素在集合里了,直接枚举第一个集合元素个数就可以了

</br>
然后那个$2^j$可以认为每个集合有两种颜色,枚举当前集合顺便枚举颜色,乘上一个2就行了

令$f(n)=2 \sum\limits_{i=1}^n \binom{n}{i} f(n-i)$,答案就是$\sum_{i=0}^n f(i)$
快速求出f就可以做了,整理一下发现
\]

f(n) = 2 n! \sum_{i=1}^n \frac{1}{i!} \frac{f(n-i)}{(n-i)!}

\[是一个卷积的形式,但是两边都有f,所以要用**CDQ分治套FFT**

</br>
###分治fft
和CDQ分治一样,每次用$[l,mid]$更新$[mid+1,r]$
可以发现,$f(i)[mid+1,r]$都是$\frac{f(i)}{i!}[l,mid]$卷上$\frac{1}{i!}[1,r-l]$的结果
我们把两个函数$[l,mid]$和$[1,r-l]$的部分拿出来做卷积,更新$[mid+1,r]$
可以认为先把向量移动了l位

复杂度$O(nlog^2n)$,13560ms,~~貌似别人的分治fft更慢20000ms多~~
</br>
注意初始值$f[0]=1$因为$S(0,0)=1$,以及cdq(0,n)

</br>
###多项式求逆
当然也可以,具体看[51nod这篇讨论](http://www.51nod.com/question/index.html#!questionId=1713)吧
把$f_0 x^0$单独拿出来的思想比较有意思,$A(x)$从0开始,$B(x)$从1开始($B_0 = 0$)
$$A(x) = F_0 x^0 + A(x) B(x)\]

update 2017.5.3 : 发现tls貌似补了一句\(2x e^x\),求这个东西来做也可以,但不如直接处理处B来方便

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5, INF=1e9;
const ll P=998244353, g=3;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} ll Pow(ll a, ll b) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
} int n, rev[N];
ll inv[N], fac[N], facInv[N];
ll f[N], a[N], b[N];
void dft(ll *a, int n, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(ll *p=a; p!=a+n; p+=l) {
ll w=1;
for(int k=0; k<m; k++) {
ll t = w*p[k+m];
p[k+m]=(p[k]-t+P)%P;
p[k]=(p[k]+t)%P;
w=w*wn%P;
}
}
}
if(flag==-1) {
ll inv=Pow(n, P-2);
for(int i=0; i<n; i++) a[i]=a[i]*inv%P;
}
}
void cdq(int l, int r) {
if(l==r) return;
int mid=(l+r)>>1;
cdq(l, mid);
int lim=r-l+1, n=1, k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1)); for(int i=0; i<n; i++) a[i]=b[i]=0;
for(int i=l; i<=mid; i++) a[i-l] = f[i];
for(int i=0; i<=r-l; i++) b[i] = facInv[i];
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i]=a[i]*b[i]%P;
dft(a, n, -1); for(int i=mid+1; i<=r; i++) f[i]=(f[i] + 2*a[i-l])%P;
cdq(mid+1, r);
}
int main() {
freopen("in","r",stdin);
n=read();
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
f[0]=1;
cdq(0, n);
ll ans=0;
for(int i=0; i<=n; i++) ans = (ans + f[i]*fac[i]%P)%P;
if(ans<0) ans+=P;
printf("%lld\n", ans);
}

BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]的更多相关文章

  1. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  3. [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)

    4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 525  Solved: 418[Sub ...

  4. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

  5. BZOJ 4555 [Tjoi2016&Heoi2016]求和 (多项式求逆)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题目大意: 给定 \(S(n,m)\) 表示第二类斯特林数,定义函数 \(f(n ...

  6. bzoj 4555: [Tjoi2016&Heoi2016]求和【NTT】

    暴力推式子推诚卷积形式,但是看好多blog说多项式求逆不知道是啥.. \[ \sum_{i=0}^{n}\sum_{j=0}^{n}S(i,j)*2^j*j! \] \[ S(i,j)=\frac{1 ...

  7. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

  8. [BZOJ 4555][Tjoi2016&Heoi2016]求和

    题意 给定 $n$ , 求下式的值: $$ f(n)= \sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\ j\end{Bmatrix}\times 2^j\time ...

  9. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

随机推荐

  1. hdu_1036(取整和格式控制)

    题意很简单,求平均时间 复习一下如何取整 (int) fl 是直接向下取整  ==  floor(fl) 向上取整 (int)(fl+1)  == ceil(fl) 四舍五入 (int)(fl+0.5 ...

  2. 在vue-cli项目中使用echarts

    这个示例使用 vue-cli 脚手架搭建 安装echarts依赖 npm install echarts -S 或者使用国内的淘宝镜像: 安装 npm install -g cnpm --regist ...

  3. 设置Sql server用户对表、视图、存储过程、架构的增删改查权限

    根据数据库Schema限制用户对数据库的操作行为 授予Shema dbo下对象的定义权限给某个用户(也就是说该用户可以修改架构dbo下所有表/视图/存储过程/函数的结构) use [Your DB N ...

  4. 微信小程序:微信登陆(ThinkPHP作后台)

      https://www.jianshu.com/p/340b1ba5245e QQ截图20170320170136.png 微信小程序官方给了十分详细的登陆时序图,当然为了安全着想,应该加上签名加 ...

  5. dede:list及dede:arclist 按权重排序的方法

    有时我们需要做文章排名,比如指定第一名到第三名在前面,这样就用到这个权重排序方法.稍改下就可以完美支持.. dede:list 的方法 1 找到"根目录\include\arc.listvi ...

  6. JavaSE笔记-泛型

    定义带泛型的类 public class Cat<T> { //可以用T定义实例变量 private T name; //可以用T定义形参 //构造器没有<> public C ...

  7. Build path contains duplicate entry

    问题:Build path contains duplicate entry:''D:soft/Myeclipse 6.5/jre/lib/rt.jar' for project 'dataServi ...

  8. Spring Boot:在Spring Boot中使用Mysql和JPA

    本文向你展示如何在Spring Boot的Web应用中使用Mysq数据库,也充分展示Spring Boot的优势(尽可能少的代码和配置).数据访问层我们将使用Spring Data JPA和Hiber ...

  9. python 中 reversed()函数

    一个列表a: a=[1,2,3,4,5,6,7] 一个对象b: b=reversed(a) 输出: print(b) <list_reverseiterator object at 0x0000 ...

  10. 摘-BMC自动化解决方案产品概览

    以下内容摘自BMC解决方案白皮书 BMC 解决方案助力您的企业快速享受自动化带来的快速效益,并随时间推移实现这些优势的最大化. BMC 自动化技术可帮助您优化敏捷性,同时保持必要的治理和合规性控制.无 ...