1、关于Java8部分新特性介绍

Java8的新特性很多,在此就不一一介绍了,这里只说一下我自己在工作用用得比较多的几点:

1.1、Lambda表达式

Lambda允许把函数作为一个方法的参数(函数作为参数传递进方法中)

  • 语法格式:

  (parameters) -> expression 或者 (parameters) -> {statements;}

  • PS:

  (1)如果参数只有一个,可以不加圆括号

  (2)不需要声明参数类型

  (3)如果只有一条语句,可以不加花括号

  (4)如果只有一条语句,编译器会自动将值返回;如果多条的话,需要手动return

1.2、方法引用

方法引用通过方法的名字来指向一个方法

  • 语法格式:

  方法引用使用一对冒号 ::

  

  构造方法引用: 类::new

  静态方法引用:类::静态方法

  实例方法引用:类::实例方法  或者  对象::实例方法

1.3、Stream API

这个有点像Strom的处理方法(Spout和Blot),又有点像MapReduce(map和reduce)。用流的方式去处理,把一个集合元素转成一个一个的流,然后分别处理,最后再汇总。

1.4、接口中可以定义默认方法和静态方法

2、Stream API

     private List<CouponInfo> couponInfoList;

     private List<String> strList;

     private List<Integer> intList;

     @Before
public void init() {
CouponInfo couponInfo1 = new CouponInfo(123L, 10001, "5元现金券");
CouponInfo couponInfo2 = new CouponInfo(124L, 10001, "10元现金券");
CouponInfo couponInfo3 = new CouponInfo(125L, 10002, "全场9折");
CouponInfo couponInfo4 = new CouponInfo(126L, 10002, "全场8折");
CouponInfo couponInfo5 = new CouponInfo(127L, 10003, "全场7折"); couponInfoList = new ArrayList<>();
couponInfoList.add(couponInfo1);
couponInfoList.add(couponInfo2);
couponInfoList.add(couponInfo3);
couponInfoList.add(couponInfo4);
couponInfoList.add(couponInfo5); couponInfoList = new ArrayList<>();
couponInfoList.add(couponInfo1);
couponInfoList.add(couponInfo2);
couponInfoList.add(couponInfo3);
couponInfoList.add(couponInfo4);
couponInfoList.add(couponInfo5); strList = Arrays.asList(new String[]{"A", "S", "D", "F", "X", "C", "Y", "H", "", null}); intList = Arrays.asList(new Integer[]{1, 2, 3, 4, 5, 6, 6, 2, 3});
}

2.1、forEach

     /**
* 迭代 forEach
*/
@Test
public void testForEach() {
strList.stream().forEach(System.out::println);
strList.stream().forEach(e->System.out.print(e));
System.out.println();
strList.forEach(System.out::print);
}
A
S
D
F
X
C
Y
H null
ASDFXCYHnull
ASDFXCYHnull

2.2、filter

     /**
* 过滤 filter
*/
@Test
public void testFilter() {
List<String> list = strList.stream().filter(x-> StringUtils.isNotBlank(x)).collect(Collectors.toList());
System.out.println(list);
List<Integer> list2 = intList.stream().distinct().collect(Collectors.toList());
System.out.println(list2);
List<CouponInfo> list3 = couponInfoList.stream().filter(x->x.getMerchantId() != 10001).collect(Collectors.toList());
System.out.println(list3);
}
[A, S, D, F, X, C, Y, H]
[1, 2, 3, 4, 5, 6]
[CouponInfo{id=125, merchantId=10002, couponName='全场9折'}, CouponInfo{id=126, merchantId=10002, couponName='全场8折'}, CouponInfo{id=127, merchantId=10003, couponName='全场7折'}]

2.3、limit

     /**
* limit
*/
@Test
public void testLimit() {
List<String> list = strList.stream().limit(3).collect(Collectors.toList());
System.out.println(list);
}
[A, S, D]

2.4、sorted

     /**
* 排序 sorted
*/
@Test
public void testSorted() {
List<Integer> list = intList.stream().sorted().collect(Collectors.toList());
System.out.println(list);
// 倒序
List<Integer> list2 = intList.stream().sorted(Comparator.reverseOrder()).collect(Collectors.toList());
System.out.println(list2); List<String> list3 = strList.stream().sorted(Comparator.nullsLast(Comparator.naturalOrder())).collect(Collectors.toList());
List<String> list4 = strList.stream().sorted(Comparator.nullsLast(Comparator.reverseOrder())).collect(Collectors.toList());
System.out.println(list3);
System.out.println(list4); List<CouponInfo> list5 = couponInfoList.stream().sorted(Comparator.comparing(CouponInfo::getId)).collect(Collectors.toList());
List<CouponInfo> list6 = couponInfoList.stream().sorted(Comparator.comparing(CouponInfo::getId).reversed()).collect(Collectors.toList());
List<Long> list51 = list5.stream().map(e->e.getId()).collect(Collectors.toList());
List<Long> list61 = list6.stream().map(e->e.getId()).collect(Collectors.toList());
System.out.println(list51);
System.out.println(list61);
}
[1, 2, 2, 3, 3, 4, 5, 6, 6]
[6, 6, 5, 4, 3, 3, 2, 2, 1]
[, A, C, D, F, H, S, X, Y, null]
[Y, X, S, H, F, D, C, A, , null]
[123, 124, 125, 126, 127]
[127, 126, 125, 124, 123]

2.5、map

     /**
* map
* 对每个元素进行处理,相当于MapReduce中的map阶段
* Collectors.mapping()类似
*/
@Test
public void testMap() {
List<Integer> list = intList.stream().map(e->2*e).collect(Collectors.toList());
System.out.println(list);
}
[2, 4, 6, 8, 10, 12, 12, 4, 6]

2.6、toMap

     /**
* 转成Map<K,V>
*
* 特别注意,key不能重复,如果重复的话默认会报错,可以指定key重复的时候怎么处理
*
* 例如:Map<String, Student> studentIdToStudent = students.stream().collect(toMap(Student::getId, Functions.identity());
*/
@Test
public void testToMap() {
// 因为ID不重复,所以这里这么写没问题;但如果key换成CouponInfo::getMerchantId就有问题了
Map<Long, CouponInfo> map = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getId, Function.identity()));
// 这里重复的处理方式就是用后者覆盖前者
Map<Integer, CouponInfo> map2 = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getMerchantId, Function.identity(), (c1, c2)->c2));
Map<Integer, CouponInfo> map3 = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getMerchantId, Function.identity(),
(c1, c2)->{if (c1.getId() > c2.getId()) {
return c2;
}else {
return c1;
}
}));
System.out.println(map);
System.out.println(map2);
System.out.println(map3);
}
{123=CouponInfo{id=123, merchantId=10001, couponName='5元现金券'}, 124=CouponInfo{id=124, merchantId=10001, couponName='10元现金券'}, 125=CouponInfo{id=125, merchantId=10002, couponName='全场9折'}, 126=CouponInfo{id=126, merchantId=10002, couponName='全场8折'}, 127=CouponInfo{id=127, merchantId=10003, couponName='全场7折'}}
{10001=CouponInfo{id=124, merchantId=10001, couponName='10元现金券'}, 10002=CouponInfo{id=126, merchantId=10002, couponName='全场8折'}, 10003=CouponInfo{id=127, merchantId=10003, couponName='全场7折'}}
{10001=CouponInfo{id=123, merchantId=10001, couponName='5元现金券'}, 10002=CouponInfo{id=125, merchantId=10002, couponName='全场9折'}, 10003=CouponInfo{id=127, merchantId=10003, couponName='全场7折'}}

2.6、groupingBy

     /**
* 分组 groupingBy
*/
@Test
public void testGroupBy() {
Map<Integer, List<CouponInfo>> map = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId));
Map<Integer, Long> map2 = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId, Collectors.counting()));
Map<Integer, Set<String>> map3 = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId, Collectors.mapping(CouponInfo::getCouponName, Collectors.toSet())));
System.out.println(map);
System.out.println(map2);
System.out.println(map3);
}
{10001=[CouponInfo{id=123, merchantId=10001, couponName='5元现金券'}, CouponInfo{id=124, merchantId=10001, couponName='10元现金券'}], 10002=[CouponInfo{id=125, merchantId=10002, couponName='全场9折'}, CouponInfo{id=126, merchantId=10002, couponName='全场8折'}], 10003=[CouponInfo{id=127, merchantId=10003, couponName='全场7折'}]}
{10001=2, 10002=2, 10003=1}
{10001=[10元现金券, 5元现金券], 10002=[全场9折, 全场8折], 10003=[全场7折]}

2.7、summary

     /**
* 数值统计
*/
@Test
public void testSum() {
IntSummaryStatistics summaryStatistics = intList.stream().mapToInt(x->x).summaryStatistics();
System.out.println(summaryStatistics.getMax());
System.out.println(summaryStatistics.getMin());
System.out.println(summaryStatistics.getAverage());
System.out.println(summaryStatistics.getSum());
}
6
1
3.5555555555555554
32

3、完整代码

 package com.cjs.boot.demo;

 import com.cjs.boot.domain.entity.CouponInfo;
import org.apache.commons.lang3.StringUtils;
import org.junit.Before;
import org.junit.Test; import java.util.*;
import java.util.function.Function;
import java.util.stream.Collectors; public class StreamDemoTest { private List<CouponInfo> couponInfoList; private List<String> strList; private List<Integer> intList; @Before
public void init() {
CouponInfo couponInfo1 = new CouponInfo(123L, 10001, "5元现金券");
CouponInfo couponInfo2 = new CouponInfo(124L, 10001, "10元现金券");
CouponInfo couponInfo3 = new CouponInfo(125L, 10002, "全场9折");
CouponInfo couponInfo4 = new CouponInfo(126L, 10002, "全场8折");
CouponInfo couponInfo5 = new CouponInfo(127L, 10003, "全场7折"); couponInfoList = new ArrayList<>();
couponInfoList.add(couponInfo1);
couponInfoList.add(couponInfo2);
couponInfoList.add(couponInfo3);
couponInfoList.add(couponInfo4);
couponInfoList.add(couponInfo5); couponInfoList = new ArrayList<>();
couponInfoList.add(couponInfo1);
couponInfoList.add(couponInfo2);
couponInfoList.add(couponInfo3);
couponInfoList.add(couponInfo4);
couponInfoList.add(couponInfo5); strList = Arrays.asList(new String[]{"A", "S", "D", "F", "X", "C", "Y", "H", "", null}); intList = Arrays.asList(new Integer[]{1, 2, 3, 4, 5, 6, 6, 2, 3});
} /**
* 迭代 forEach
*/
@Test
public void testForEach() {
strList.stream().forEach(System.out::println);
strList.stream().forEach(e->System.out.print(e));
System.out.println();
strList.forEach(System.out::print);
} /**
* 过滤 filter
*/
@Test
public void testFilter() {
List<String> list = strList.stream().filter(x-> StringUtils.isNotBlank(x)).collect(Collectors.toList());
System.out.println(list);
List<Integer> list2 = intList.stream().distinct().collect(Collectors.toList());
System.out.println(list2);
List<CouponInfo> list3 = couponInfoList.stream().filter(x->x.getMerchantId() != 10001).collect(Collectors.toList());
System.out.println(list3);
} /**
* limit
*/
@Test
public void testLimit() {
List<String> list = strList.stream().limit(3).collect(Collectors.toList());
System.out.println(list);
} /**
* 排序 sorted
*/
@Test
public void testSorted() {
List<Integer> list = intList.stream().sorted().collect(Collectors.toList());
System.out.println(list);
// 倒序
List<Integer> list2 = intList.stream().sorted(Comparator.reverseOrder()).collect(Collectors.toList());
System.out.println(list2); List<String> list3 = strList.stream().sorted(Comparator.nullsLast(Comparator.naturalOrder())).collect(Collectors.toList());
List<String> list4 = strList.stream().sorted(Comparator.nullsLast(Comparator.reverseOrder())).collect(Collectors.toList());
System.out.println(list3);
System.out.println(list4); List<CouponInfo> list5 = couponInfoList.stream().sorted(Comparator.comparing(CouponInfo::getId)).collect(Collectors.toList());
List<CouponInfo> list6 = couponInfoList.stream().sorted(Comparator.comparing(CouponInfo::getId).reversed()).collect(Collectors.toList());
List<Long> list51 = list5.stream().map(e->e.getId()).collect(Collectors.toList());
List<Long> list61 = list6.stream().map(e->e.getId()).collect(Collectors.toList());
System.out.println(list51);
System.out.println(list61);
} /**
* map
* 对每个元素进行处理,相当于MapReduce中的map阶段
* Collectors.mapping()类似
*/
@Test
public void testMap() {
List<Integer> list = intList.stream().map(e->2*e).collect(Collectors.toList());
System.out.println(list);
} /**
* 转成Map<K,V>
*
* 特别注意,key不能重复,如果重复的话默认会报错,可以指定key重复的时候怎么处理
*
* 例如:Map<String, Student> studentIdToStudent = students.stream().collect(toMap(Student::getId, Functions.identity());
*/
@Test
public void testToMap() {
// 因为ID不重复,所以这里这么写没问题;但如果key换成CouponInfo::getMerchantId就有问题了
Map<Long, CouponInfo> map = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getId, Function.identity()));
// 这里重复的处理方式就是用后者覆盖前者
Map<Integer, CouponInfo> map2 = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getMerchantId, Function.identity(), (c1, c2)->c2));
Map<Integer, CouponInfo> map3 = couponInfoList.stream().collect(Collectors.toMap(CouponInfo::getMerchantId, Function.identity(),
(c1, c2)->{if (c1.getId() > c2.getId()) {
return c2;
}else {
return c1;
}
}));
System.out.println(map);
System.out.println(map2);
System.out.println(map3);
} /**
* 分组 groupingBy
*/
@Test
public void testGroupBy() {
Map<Integer, List<CouponInfo>> map = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId));
Map<Integer, Long> map2 = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId, Collectors.counting()));
Map<Integer, Set<String>> map3 = couponInfoList.stream().collect(Collectors.groupingBy(CouponInfo::getMerchantId, Collectors.mapping(CouponInfo::getCouponName, Collectors.toSet())));
System.out.println(map);
System.out.println(map2);
System.out.println(map3);
} /**
* 数值统计
*/
@Test
public void testSum() {
IntSummaryStatistics summaryStatistics = intList.stream().mapToInt(x->x).summaryStatistics();
System.out.println(summaryStatistics.getMax());
System.out.println(summaryStatistics.getMin());
System.out.println(summaryStatistics.getAverage());
System.out.println(summaryStatistics.getSum());
} }

参考

http://ifeve.com/java-8-tutorial-2/

https://www.cnblogs.com/justcooooode/p/7701260.html

Java 8 Stream的更多相关文章

  1. Java 8 Stream API详解--转

    原文地址:http://blog.csdn.net/chszs/article/details/47038607 Java 8 Stream API详解 一.Stream API介绍 Java8引入了 ...

  2. java之stream(jdk8)

    一.stream介绍 参考: Java 8 中的 Streams API 详解   Package java.util.stream   Java8初体验(二)Stream语法详解   二.例子 im ...

  3. Java 8 Stream API Example Tutorial

    Stream API Overview Before we look into Java 8 Stream API Examples, let’s see why it was required. S ...

  4. Java笔记:Java 流(Stream)、文件(File)和IO

    更新时间:2018-1-7 12:27:21 更多请查看在线文集:http://android.52fhy.com/java/index.html java.io 包几乎包含了所有操作输入.输出需要的 ...

  5. [零]java8 函数式编程入门官方文档中文版 java.util.stream 中文版 流处理的相关概念

    前言 本文为java.util.stream 包文档的译文 极其个别部分可能为了更好理解,陈述略有改动,与原文几乎一致 原文可参考在线API文档 https://docs.oracle.com/jav ...

  6. java 11 Stream 加强

    Stream 是 Java 8 中的新特性,Java 9 开始对 Stream 增加了以下 4 个新方法. 1) 增加单个参数构造方法,可为null Stream.ofNullable(null).c ...

  7. Java 8 新特性-菜鸟教程 (5) -Java 8 Stream

    Java 8 Stream Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据. Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种 ...

  8. 关于java中Stream理解

    关于java中Stream理解 Stream是什么 Stream:Java 8新增的接口,Stream可以认为是一个高级版本的Iterator.它代表着数据流,流中的数据元素的数量可以是有限的, 也可 ...

  9. java.util.stream 库简介

    Java Stream简介 Java SE 8 中主要的新语言特性是拉姆达表达式.可以将拉姆达表达式想作一种匿名方法:像方法一样,拉姆达表达式具有带类型的参数.主体和返回类型.但真正的亮点不是拉姆达表 ...

随机推荐

  1. 【unix网络编程第三版】阅读笔记(四):TCP客户/服务器实例

    本篇博客主要记录一个完整的TCP客户/服务器实例的编写,以及从这个实例中引发的对僵死进程的处理等问题. 1. TCP客户/服务器功能需求 本实例完成以下功能: (1) 客户从标准输入读入一行文本,并写 ...

  2. lk中内联调用的dsb()

    lk中内联调用的dsb() 比如lk的uart_dm_init()函数就调用了dsb() /* Configure the uart clock */ clock_config_uart_dm(id) ...

  3. iOS中 蓝牙2.0详解/ios蓝牙设备详解 韩俊强的博客

    每日更新关注:http://weibo.com/hanjunqiang  新浪微博 整体布局如下:     程序结构如右图: 每日更新关注:http://weibo.com/hanjunqiang  ...

  4. 在CSDN开通博客专栏后如何发布文章(图文)

    今天打开电脑登上CSDN发现自己授予了专栏勋章,有必要了解如何在专栏发布文章. 很感谢已经有前辈给出了图文教程,此文章转载自博客:http://blog.csdn.net/upi2u/article/ ...

  5. C3P0和DBCP的区别

    C3P0和DBCP的区别 C3P0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展.目前使用它的开源项目有Hibernate,Spring等.     ...

  6. python循环for,range,xrange;while

    >>>range(1,5)#代表从1到5(不包含5) [1,2,3,4] >>>range(1,5,2)#代表从1到5,间隔2(不包含5) [1,3] >&g ...

  7. OC语言(七)Block复习

    看下面一道Block的面试题: int i = 10; void(^myBlock)() = ^{ NSLog(@"%d",i); }; i = 100; myBlock(); 经 ...

  8. Linux进程实践(4) --wait避免僵尸进程

    Wait的背景 当子进程退出的时候,内核会向父进程发送SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) 子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程 ...

  9. EBS 信用检查(一)

    信用逻辑 This post will more focus on Technical part of credit check Functionality. You can check the fu ...

  10. Spring mvc整合freemarker详解

    1.什么是FreeMarker FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写 FreeMarker被设计用来生成HTML Web页面,特别是基于MVC模式 ...