BZOJ_4004_[JLOI2015]装备购买_线性基

Description

脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 
(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着
怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是
说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果
脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzi
p = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2;
 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 
就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

Input

第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。

Output

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

Sample Input

3 3
1 2 3
3 4 5
2 3 4
1 1 2

Sample Output

2 2

HINT

如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。

线性基是拟阵,拟阵最优化问题使用贪心。
高斯消元一遍,每次把这一项的系数不是0并且花钱数最少的装备拿出来消去其他项。
可以证明最后的结果一定是最优的。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define eps 1e-6
typedef long double f2;
int n,m;
f2 a[510][510];
f2 fabs(f2 x){return x>0?x:-x;}
void Gauss() {
int i,j,k,mx;
f2 ans=0;
int cnt=0;
for(i=1;i<=m;i++) {
mx=0;
for(j=i;j<=n;j++) {
if(fabs(a[j][i])>eps) {
if(!mx) mx=j;
else if(a[j][m+1]<a[mx][m+1]) mx=j;
}
}
if(!mx) continue;
ans+=a[mx][m+1]; cnt++;
for(j=i;j<=m+1;j++) swap(a[i][j],a[mx][j]);
for(j=i+1;j<=n;j++) {
f2 tmp=-(a[j][i]/a[i][i]);
a[j][i]=0;
for(k=i+1;k<=m;k++) a[j][k]+=tmp*a[i][k];
}
}
printf("%d %.0Lf\n",cnt,ans);
}
int main() {
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%Lf",&a[i][j]);
}
}
for(i=1;i<=n;i++) scanf("%Lf",&a[i][m+1]);
Gauss();
}

BZOJ_4004_[JLOI2015]装备购买_线性基的更多相关文章

  1. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  2. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  3. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  4. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  5. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  6. BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]

    一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...

  7. [BZOJ4004][JLOI2015]装备购买(贪心+线性基)

    求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...

  8. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  9. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

随机推荐

  1. Spring ioc 详解

    引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础上开花结果.但是IoC这个重要的概念却比较晦涩隐讳,不容易让人望文生义,这不能不 ...

  2. 全局程序集缓存GAC

    GAC中的所有的Assembly都会存放在系统目录"%winroot%\assembly下面.放在系统目录下的好处之一是可以让系统管理员通过用户权限来控制Assembly的访问. 目录:C: ...

  3. SQL 逻辑优化 case when 转为 union all

    通常数据库的优化从硬件层面去考虑可分为4个方面: CPU:即降低计算复杂度,如减少sql各类聚合函数,窗口函数,case when等. IO :(较少查询结果集过程中对数据的访问量.数据优化很大程度从 ...

  4. 在vs2013下手把手创建/调用dll

    body { font: 16px } 参考了大佬的文章 首先,体会一下静态编译: 创建Win32Project,选DLL,添加一个.h和.cpp文件 点击生成解决方案,然后去debug目录下拷贝.l ...

  5. 重构:以Java POI 导出EXCEL为例

    重构 开头先抛出几个问题吧,这几个问题也是<重构:改善既有代码的设计>这本书第2章的问题. 什么是重构? 为什么要重构? 什么时候要重构? 接下来就从这几个问题出发,通过这几个问题来系统的 ...

  6. SQL Server复制表结构和表数据生成新表的语句

    参考:http://topic.csdn.net/t/20020621/09/820025.html SELECT   *   INTO   newTableName   FROM   oldTabl ...

  7. pyspider的一个诡异问题

    其Start_url两次抓取处理失败以后,其之后的所有抓取行为就不正常,似乎根本没有HTTP访问,我把该爬虫的taskdb清空,该爬虫爬取行为恢复正常.这个问题已提交pyspider官方,静待回答.

  8. ERR_NAME_NOT_RESOLVED错误的解决

    参考:http://zhidao.baidu.com/link?url=-Beq80OXoSKef_9SmGXkQHvq2AkSE0aGfac02ykorglQF6JTP7F1XNtVxFn9EMfn ...

  9. 【js-xlsx和file-saver插件】前端html的table导出数据到excel的表格合并显示boder

    最近在做项目,需要从页面的表格中导出excel,一般导出excel有两种方法:一.习惯上是建模版从后台服务程序中导出:二.根据页面table中导出:综合考虑其中利弊选择二.根据页面table中导出ex ...

  10. Java杂记9—NIO

    前言 非阻塞IO,也被称之为新IO,它重新定义了一些概念. 缓冲buffer 通道 channel 通道选择器 BIO 阻塞IO,几乎所有的java程序员都会的字节流,字符流,输入流,输出流等分类就是 ...