Description

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Solution

期望DP,注意到\(n\)很小,可以状压

设 \(dp[i][j]\) 为走到 \(i\) 这个节点当前的状态为 \(j\) 的最大期望分值

\(dp[i][S]+=max(dp[i+1][S],1.0*(a[j]+dp[i+1][S|(1<<(j-1))]))/n\),该状态包含该宝物的前提.

\(dp[i][S]+=dp[i+1][S]/n\),该宝物的前提没有被包含

注意期望DP倒推.

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=105;
double dp[N][1<<15];int a[N],c[N];
void work()
{
int K,n,x;
scanf("%d%d",&K,&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
scanf("%d",&x);
while(x)c[i]|=(1<<(x-1)),scanf("%d",&x);
}
int lim=1<<n;
for(int i=K;i>=1;i--){
for(int S=0;S<lim;S++){
for(int j=1;j<=n;j++){
int T=c[j];
if((S&T)==T)
dp[i][S]+=
max(dp[i+1][S],1.0*(a[j]+dp[i+1][S|(1<<(j-1))]))/n;
else dp[i][S]+=dp[i+1][S]/n;
}
}
}
printf("%.6lf\n",dp[1][0]);
} int main()
{
work();
return 0;
}

bzoj 1076: [SCOI2008]奖励关的更多相关文章

  1. ●BZOJ 1076 [SCOI2008]奖励关

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1076题解: 期望dp. (模糊的题意,2333) 题中的:"现在决定不吃的宝物以后 ...

  2. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  3. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

  4. BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]

    传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...

  5. bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】

    设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...

  6. 1076: [SCOI2008]奖励关( dp )

    期望状压dp.... ------------------------------------------------------------------ #include<cstdio> ...

  7. 1076: [SCOI2008]奖励关

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2078  Solved: 1118[Submit][Statu ...

  8. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  9. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

随机推荐

  1. 248&258--高级软件工程第三次作业

    0 小组成员 马帅 / 2017202110248 齐爽爽 / 2017282110258 1 项目 GitHub 地址 GitHub:https://github.com/whumashuai/QT ...

  2. JAVA的循环控制与循环嵌套

    循环控制和循环嵌套 循环控制是除了循环条件之外,控制循环是否进行的一个机制,这给处理循环问题带来了灵活性.循环体内的语句块可以是顺序执行的语句,可以是分支结构的语句,也可以是循环语句,循环中含循环,就 ...

  3. 解决background图片拉伸问题

    ImageView中XML属性src和background的区别: background会根据ImageView组件给定的长宽进行拉伸,而src就存放的是原图的大小,不会进行拉伸.src是图片内容(前 ...

  4. Telnet、SSH和VNC 区别

    Telnet Telnet是进行远程登录的标准协议,它是当今Internet上应用最广泛的协议之一.它把用户正在使用的终 端或计算机变成网络某一远程主机的仿真终端,使得用户可以方便地使用远程主机上的软 ...

  5. bzoj千题计划108:bzoj1018: [SHOI2008]堵塞的交通traffic

    http://www.lydsy.com/JudgeOnline/problem.php?id=1018 关键点在于只有两行 所以一个2*m矩形连通情况只有6种 编号即对应代码中的a数组 线段树维护 ...

  6. hdu 4553 约会安排

    约会安排 http://acm.hdu.edu.cn/showproblem.php?pid=4553 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  7. JAVA_SE基础——28.封装

    黑马程序员blog... 面向对象三大特征:1. 封装2. 继承3  多态. 今天我们先学习第一大特征,封装. 封装:是指隐藏对象的属性和实现细节,仅对外提供公共访问方式. 好处:     1. 将变 ...

  8. Docker学习笔记 - Docker的远程访问

    学习内容: 配置客户端与守护进程的远程访问 服务端配置-H选项: 使服务端支持远程被访问 客户端使用-H选项: 使客户端访问远程服务端 本地环境DOCKER_HOST设置客户端访问的默认服务端地址 准 ...

  9. Docker学习笔记 - Docker的守护进程

    学习目标:  查看Docker守护进程的运行状态 启动.停止.重启Docker守护进程 Docker守护进程的启动选项 修改和查看Docker守护进程的启动选项 1.# 查看docker运行状态  方 ...

  10. 新概念英语(1-55)The Sawyer family

    新概念英语(1-55)The Sawyer family When do the children do their homework? The Sawyers live at 87 King Str ...