Description

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Solution

期望DP,注意到\(n\)很小,可以状压

设 \(dp[i][j]\) 为走到 \(i\) 这个节点当前的状态为 \(j\) 的最大期望分值

\(dp[i][S]+=max(dp[i+1][S],1.0*(a[j]+dp[i+1][S|(1<<(j-1))]))/n\),该状态包含该宝物的前提.

\(dp[i][S]+=dp[i+1][S]/n\),该宝物的前提没有被包含

注意期望DP倒推.

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=105;
double dp[N][1<<15];int a[N],c[N];
void work()
{
int K,n,x;
scanf("%d%d",&K,&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
scanf("%d",&x);
while(x)c[i]|=(1<<(x-1)),scanf("%d",&x);
}
int lim=1<<n;
for(int i=K;i>=1;i--){
for(int S=0;S<lim;S++){
for(int j=1;j<=n;j++){
int T=c[j];
if((S&T)==T)
dp[i][S]+=
max(dp[i+1][S],1.0*(a[j]+dp[i+1][S|(1<<(j-1))]))/n;
else dp[i][S]+=dp[i+1][S]/n;
}
}
}
printf("%.6lf\n",dp[1][0]);
} int main()
{
work();
return 0;
}

bzoj 1076: [SCOI2008]奖励关的更多相关文章

  1. ●BZOJ 1076 [SCOI2008]奖励关

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1076题解: 期望dp. (模糊的题意,2333) 题中的:"现在决定不吃的宝物以后 ...

  2. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  3. BZOJ 1076: [SCOI2008]奖励关(概率+dp)

    首先嘛,看了这么久概率论真的不错啊。看到就知道怎么写(其实也挺容易的= =) 直接数位dp就行了 CODE: #include<cstdio> #include<cstring> ...

  4. BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]

    传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...

  5. bzoj 1076: [SCOI2008]奖励关【状压dp+概率dp】

    设f[i][s]为前i步,选的礼物集合为s的方案数,然而并不会转移-- 看了hzwer的blog,发现要倒着转移,然后答案就是f[1][0] 妙啊 #include<iostream> # ...

  6. 1076: [SCOI2008]奖励关( dp )

    期望状压dp.... ------------------------------------------------------------------ #include<cstdio> ...

  7. 1076: [SCOI2008]奖励关

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2078  Solved: 1118[Submit][Statu ...

  8. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  9. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

随机推荐

  1. C语言第二次博客作业---分支结构 陈张鑫

    一.PTA实验作业 题目1:计算分段函数[2] 本题目要求计算下列分段函数f(x)的值: 1.实验代码 int main(){double x,y; scanf("%lf",&am ...

  2. python 使用Nginx和uWSGI来运行Python应用

    参考:http://zmrenwu.com/post/20/ uWSGI是一个Web应用服务器,它具有应用服务器,代理,进程管理及应用监控等功能.它支持WSGI协议,同时它也支持自有的uWSGI协议, ...

  3. C简单实现双向链表

    <pre name="code" class="cpp">//链表结构 typedef struct DulNode { DataType data ...

  4. 谈谈ASP.NET Core中的ResponseCaching

    前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...

  5. 《网络》:设置三个密码:通过console口连接设备,进入特权模式,登录Telnet

    软件:Cisco Packet Tracer Instructor 软件下载链接在上一篇文章中. 内容:通过设置三个密码,熟悉采用Telnet方式配置交换机的方法. 细节说明:计算机的IP地址和交换机 ...

  6. ssl双向认证

    ssl双向认证 一.背景知识 1.名词解释 ca.key: 根证书的私钥 , ca.crt: 根证书的签名证书 server.key, server.crt client.key, client.cr ...

  7. python入门(10)使用List和tuple

    python入门(10)使用List和tuple list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可 ...

  8. sql server 常用的查询语句

    最近在加强sql 语句的学习,整理一下基本语法,现在记录下 select * from dbo.cangku where city='河南' select  distinct(city), cangk ...

  9. flask 视图函数的使用

    flask框架 视图函数当中 各种实用情况简单配置 1 建立连接 2 路由参数 3 返回网络状态码 4 自定义错误页面 5 重定向 6 正则url限制 和 url 优化 7 设置和获取cookie # ...

  10. CentOS7从U盘中拷贝文件

    1. 要想从U盘中拷贝文件,必须要将U盘挂载到一个目录中,所以必须新建一个目录,一般建在/mnt下.我们执行:mkdir /mnt/usb来新建一个目录. 2. 查看U盘是否已经被识别.执行:df - ...