loj#115. 无源汇有上下界可行流
\(\color{#0066ff}{ 题目描述 }\)
这是一道模板题。
\(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \(\text{upper}(e)\),求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限制。
$\color{#0066ff}{ 输入格式 } $
第一行两个正整数 \(n\)、\(m\)。
之后的 \(m\) 行,每行四个整数 \(s\)、\(t\)、\(\text{lower}\)、\(\text{upper}\)。
\(\color{#0066ff}{输出格式}\)
如果无解,输出一行 NO。
否则第一行输出 YES,之后 \(m\) 行每行一个整数,表示每条边的流量。
\(\color{#0066ff}{输入样例}\)
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
\(\color{#0066ff}{输出样例}\)
NO
YES
1
2
3
2
1
1
\(\color{#0066ff}{数据范围与提示}\)
1≤n≤200,1≤m≤10200
\(\color{#0066ff}{ 题解 }\)
无源汇有上下界可行流判断
无源汇是没有s和t
有上下界是指每个边的流量要在一个\([l,r]\)内
可行流,指的是每条边都要有一个合法流,使得对于任意一个点入流=出流
这个要怎么求?
对于一条边\(x\to y\),上下界为[l,r]
显然如果成立,这条边最少流l
把一条边拆成两条,一条容量为r-l, 一条容量为l,那么容量为l的那条边是一定要流满的
我们建立一个超级源s和超级汇t
对于\(x\to y\)
从x到y连容量为r-l的边, 向y连容量为l的边, x向t连容量为l的边
即强制给yl的流,通过一些环(其它路径)流到x
最后只需判断s出去的边的所有容量和与最大流是否相等即可
当且仅当所有l的边都流满了才有解,对于那些r-l的边,随便流多少,一定在范围内的
最后实际上每条边的流量就是r-l的边的流量+l
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 3e4 + 10;
struct node {
int to, dis, id;
node *nxt, *rev;
node(int to = 0, int dis = 0, int id = 0, node *nxt = NULL, node *rev = NULL)
: to(to), dis(dis), id(id), nxt(nxt), rev(rev) {}
void *operator new(size_t) {
static node *S = NULL, *T = NULL;
return (S == T) && (T = (S = new node[1024]) + 1024), S++;
}
}*head[maxn], *cur[maxn];
int n, m, s, t, dep[maxn], ans[maxn], d[maxn];
void add(int from, int to, int c, int id) {
head[from] = new node(to, c, id, head[from], NULL);
}
void link(int from, int to, int c, int id) {
add(from, to, c, 0);
add(to, from, 0, id);
head[from]->rev = head[to];
head[to]->rev = head[from];
}
bool bfs() {
std::queue<int> q;
for(int i = s; i <= t; i++) dep[i] = 0, cur[i] = head[i];
dep[s] = 1;
q.push(s);
while(!q.empty()) {
int tp = q.front(); q.pop();
for(node *i = head[tp]; i; i = i->nxt)
if(!dep[i->to] && i->dis)
dep[i->to] = dep[tp] + 1, q.push(i->to);
}
return dep[t];
}
int dfs(int x, int change) {
if(x == t || !change) return change;
int flow = 0, ls;
for(node *i = cur[x]; i; i = i->nxt) {
cur[x] = i;
if(dep[i->to] == dep[x] + 1 && (ls = dfs(i->to, std::min(change, i->dis)))) {
flow += ls;
change -= ls;
i->dis -= ls;
i->rev->dis += ls;
if(!change) break;
}
}
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) flow += dfs(s, 0x7ffffff);
return flow;
}
int main() {
n = in(), m = in();
s = 0, t = n + 1;
int x, y, l, r, tot = 0;
for(int i = 1; i <= m; i++) {
x = in(), y = in(), l = in(), r = in();
d[i] = l;
link(x, y, r - l, i);
link(s, y, l, 0);
link(x, t, l, 0);
tot += l;
}
if(tot == dinic()) {
for(int i = 1; i <= n; i++)
for(node *j = head[i]; j; j = j->nxt)
if(j->id)
ans[j->id] = d[j->id] + j->dis;
printf("YES\n");
for(int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
else printf("NO");
return 0;
}
loj#115. 无源汇有上下界可行流的更多相关文章
- LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)
#115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...
- [loj#115] 无源汇有上下界可行流 网络流
#115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 题 ...
- 2018.08.20 loj#115. 无源汇有上下界可行流(模板)
传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...
- LibreOJ #115. 无源汇有上下界可行流
二次联通门 : LibreOJ #115. 无源汇有上下界可行流 /* LibreOJ #115. 无源汇有上下界可行流 板子题 我也就会写写板子题了.. */ #include <cstdio ...
- 【LOJ115】无源汇有上下界可行流(模板题)
点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...
- Zoj 2314 Reactor Cooling(无源汇有上下界可行流)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...
- 无源汇有上下界可行流(ZQU 1590)
无源汇有上下界可行流(也就是循环流) 模型:一个网络,求出一个流,使得每条边的流量必须>=Li且<=Hi, 每个点必须满足总流入量=总流出量(流量守恒)(这个流的特点是循环往复,无始无终) ...
- 【模板】无源汇有上下界可行流(网络流)/ZOJ2314
先导知识 网络最大流 题目链接 https://vjudge.net/problem/ZOJ-2314 题目大意 多组数据,第一行为数据组数 \(T\). 对于每一组数据,第一行为 \(n,m\) 表 ...
- ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺 ...
随机推荐
- java 多线程系列基础篇(九)之interrupt()和线程终止方式
1. interrupt()说明 在介绍终止线程的方式之前,有必要先对interrupt()进行了解.关于interrupt(),java的djk文档描述如下:http://docs.oracle.c ...
- Oracle、SqlServer——基础知识——oracle 与 SqlServer 的区别(未完工)
一. oracle 与 SqlServer 的区别: 类别 oracle SqlServer 连接字符串 || + 变量 变量名 @变量名 初始赋值 := = SQL语句赋值 into = 绑定变量 ...
- Android 音频播放分析笔记
AudioTrack是Android中比较偏底层的用来播放音频的接口,它主要被用来播放PCM音频数据,和MediaPlayer不同,它不涉及到文件解析和解码等复杂的流程,比较适合通过它来分析Andro ...
- DAY10-MYSQL存储引擎
一 什么是存储引擎 mysql中建立的库===>文件夹 库中建立的表===>文件 现实生活中我们用来存储数据的文件有不同的类型,每种文件类型对应各自不同的处理机制:比如处理文本用txt类型 ...
- apache server和tomcat集群配置一:水平负载
下载apache server,最新链接http://archive.apache.org/dist/httpd/binaries/win32 当前实验版本2.2.4 下载apache tomca ...
- LinkedHashMap和HashMap的区别
一.问题描述: 前几天写webservices接口,需要同步人力资源,涉及到添加顺序:主账号需要添加在次账号之前,直接上级需要添加在下级之前.解析xml之后直接封装在HashMap中,导致取对象时顺序 ...
- 并发之AtomicInteger
并发之AtomicInteger 1 java.util.concurrent.atomic概要 在java.util.concurrent.atomic包下存在着18个类,其中Integer ...
- linux 中更改权限命令chown,chmod,chgrp
写在前面,关于chown,chmod的区别 chown用法 用来更改某个目录或文件的用户名和用户组的 chown 用户名:组名 文件路径(可以是就对路径也可以是相对路径) 例1:chown root: ...
- SQl Server T-sql语句学习
T-sql语句就是通过代码来代替鼠标完成一些操作,使用起来要比鼠标方便很多. 创建数据库 careate database +数据库名. 数据库名不能为中文,不能以数字开头. use 数据库 ...
- R: 对向量中的每个元素,检查其是否包含某个“单词”
#检测一个字符串中,是否包含某个子串,是返回T,否返回Frequire(stringr) require(stringr) test <- c("这里有天气热敏感冒",&qu ...