【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1
所以[1,N!]与M!互质的个数就是
筛出[1,M]所有的素数p[i] 以及逆元 p[i]-1
处理一下前缀积inv[x]=
然后答案就是N!*inv[x]
/* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define LL long long
const int N=1e7;
int R,T,n,m,cnt=;
int jc[N+],inv[N+];
bool pr[N]; void ex_gcd(int a,int b,int &x,int &y){
if (b==) {x=;y=;return;}
ex_gcd(b,a%b,y,x);
y-=x*(a/b);
} int Inv(int a){
int x,y;
ex_gcd(a,R,x,y);
return (x%R+R)%R;
} void Jc(){
jc[]=;
for (int i=;i<=N;i++){
jc[i]=1ll*jc[i-]*i%R;
}
} void Prime(){
inv[]=;
for (int i=;i<=N;i++){
inv[i]=inv[i-];
if (!pr[i]){
inv[i]=1ll*inv[i]*Inv(i)%R*(i-)%R;
if (1ll*i*i<=N) for (int j=i*i;j<=N;j+=i){
pr[j]=;
}
}
}
} int main(){
scanf("%d%d",&T,&R);
Jc();
Prime();
for (int i=;i<=T;i++){
scanf("%d%d",&n,&m);
printf("%d\n",1ll*jc[n]*inv[m]%R);
}
return ;
}
开long long跑的好慢。。11s卡过去
改成int 快了3s。。
水了一天数论感觉我数论还是这么辣鸡怎么办
【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数的更多相关文章
- BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- 【BZOJ2186】【SDoi2008】沙拉公主的困惑 数论
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑——数论
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...
- BZOJ 2186 SDOI2008 沙拉公主的困惑 数论
题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
随机推荐
- 怎么让eclipse调试的时候不进入 class文件中去
Eclipse -> Window ->Preferences ->Java ->Debug "Suspend execution on uncaught excep ...
- linux串口基本编程
Linux的串口表现为设备文件.Linux的串口设备文件命名一般为/dev/ttySn(n=0.1.2„„),若串口是USB扩展的,则串口设备文件命名多为/dev/ttyUSBn(n=0.1.2„„) ...
- 11-04 SQLserver基础--连接查询、联合查询、索引
一.子查询补充: Exists的用法: select*from haha where exists(select*from bumen where bumen.code=haha.bumen,and ...
- mysql 打印随机数
select rand(); 这样取出来的数据是类似这样的: 0.5389902438400223 要几位自己取几位: 取得方法类似 select substr(concat("000000 ...
- C程序设计语言(K&R) 笔记1
当作复习... (1)将华氏度 换算成 摄氏度,公式: ℃=(5/9)(̧°F-32) #include <stdio.h> int transformTemprature(int F){ ...
- this、new、call和apply的相关问题
讲解this指针的原理是个很复杂的问题,如果我们从javascript里this的实现机制来说明this,很多朋友可能会越来越糊涂,因此本篇打算换一个思路从应用的角度来讲解this指针,从这个角度理解 ...
- Python 安装 django框架
1.安装 pip install django 2.创建项目 d:/www/django文件夹下右键->打开dos窗口 输入: python C:\ProgramData\Miniconda3\ ...
- ueditor 1.2.6使用方法
本文以php版本为例: 文件下载:http://ueditor.baidu.com/website/download.html 还可以自己先定义内容,然后下载,这样可以帮助我们精简不少东西. 以本地p ...
- 前端学习笔记2017.6.21-html和浏览器的关系以及开发工具
html文档是一种文件格式, 浏览器可以识别这种文件格式,并能把html文档里面的内容解析出来. 用更贴近程序员的话说就是:html相当于c语言,浏览器相当于c编译器. 开发工具用sublime te ...
- python 获取路径不同方法的比较
在软件中经常需要获取文件所在路径,方法有很多种( 例如 os.path.realpath(__file__), os.getcwd(), os.path.abspath(__file__), sys ...