P4158 [SCOI2009]粉刷匠

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。

windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

发现每一行都没有关系。

那么就是一个很显然的分组背包。

把每一行看成一个物品。

那么就需要预处理出来每一行刷i次合法的最大答案。

预处理用暴力DP就可以。

一定分析复杂度,先按暴力来。

code:

#include <iostream>
#include <cstdio>
#include <cstring> #define debug puts(""); using namespace std; const int wx=3017; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} int n,m,t,num;
char c[wx],cc[wx][wx];
int zmj[wx],mm[wx],sum1[wx],sum2[wx];
int f[51][51][wx];
int F[wx]; void pre(){
for(int i=1;i<=n;i++){
scanf("%s",c+1);
memset(sum1,0,sizeof sum1);
memset(sum2,0,sizeof sum2);
for(int j=1;j<=m;j++){
if(c[j]=='1')sum1[j]=sum1[j-1]+1,sum2[j]=sum2[j-1];
else sum2[j]=sum2[j-1]+1,sum1[j]=sum1[j-1];
}
for(int l=1;l<=min(t,m);l++)
for(int j=1;j<=m;j++)
for(int k=0;k<j;k++)
f[i][j][l]=max(f[i][j][l],f[i][k][l-1]+max(sum1[j]-sum1[k],sum2[j]-sum2[k]));
}
} int main(){
n=read(); m=read(); t=read(); pre();
for(int i=1;i<=n;i++)
for(int j=t;j>=0;j--)
for(int k=1;k<=min(t,m);k++)
if(j-k>=0)
F[j]=max(F[j],F[j-k]+f[i][m][k]);
printf("%d\n",F[t]);
return 0;
}

背包 DP【洛谷P4158】 [SCOI2009]粉刷匠的更多相关文章

  1. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  2. 洛谷P4158 [SCOI2009]粉刷匠

    传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...

  3. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  4. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  5. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  6. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  8. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  9. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

随机推荐

  1. 2014.10.1 Word技巧

    设置每页都出现的表头 wordDoc.Tables[tab].Rows[1].HeadingFormat = (int)Word.WdConstants.wdToggle; //合并单元格 wordD ...

  2. scrapy-redis源码抛析

    #scrapy-redis--->queue.py-->class FifoQueue 队列 LifoQueue(lastinfirstout栈) #self.server父类Base中链 ...

  3. 关于RandomizedSearchCV 和GridSearchCV(区别:参数个数的选择方式)

    # -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:38:37 2016 @author: Administrato ...

  4. DAY10-MYSQL表操作

    一 存储引擎介绍 存储引擎即表类型,mysql根据不同的表类型会有不同的处理机制 http://www.cnblogs.com/guoyunlong666/p/8491702.html 二 表介绍 表 ...

  5. css的relative与absolute(一)

    relative与absolute是position的两个值,本文对这两个值得关系进行了一个小实验 实验一: 首先定义了两个div元素,代码如下所示: <!doctype html> &l ...

  6. os模块 os.stat('path/filename') os.path.dirname(path) os.path.exists(path)  os.path.join(path1[, path2[, ...]])

    提供对操作系统进行调用的接口 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname")  改变当前脚本工作目录:相当于 ...

  7. IDEA创建Maven Web 项目

    前提:安装过maven并且配置了maven的环境变量,这里就不演示了.转载了别人一篇maven详解,不了解的可以先看一下这个 链接 图文讲解: 创建项目 选择Maven 选择创建webapp项目 指定 ...

  8. matlab 修改文件夹下所有文件名大写为小写

    1. path = './DIR/';Files = dir(fullfile(path,'*.m'));LengthFiles = length(Files);for count_i = 1 : L ...

  9. Python 黑客 004 用Python构建一个SSH僵尸网络 01 简介

    用Python构建一个SSH僵尸网络 01 简介 一. 构建一个SSH僵尸网络的流程图: Created with Raphaël 2.1.0手动操作,实现通过SSH连接目标服务器(手动)用 Pexp ...

  10. ZROI2018提高day1t2

    传送门 分析 考场上看错了第一个条件,于是觉得是个简单贪心,随便取了每一个点的最大收益然后算了一下,就得了40pts...看来读对题很重要呀qwq.实际的正解是这样的:我们将每一个i与f[i]连一条边 ...