P4158 [SCOI2009]粉刷匠

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。

windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

发现每一行都没有关系。

那么就是一个很显然的分组背包。

把每一行看成一个物品。

那么就需要预处理出来每一行刷i次合法的最大答案。

预处理用暴力DP就可以。

一定分析复杂度,先按暴力来。

code:

#include <iostream>
#include <cstdio>
#include <cstring> #define debug puts(""); using namespace std; const int wx=3017; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} int n,m,t,num;
char c[wx],cc[wx][wx];
int zmj[wx],mm[wx],sum1[wx],sum2[wx];
int f[51][51][wx];
int F[wx]; void pre(){
for(int i=1;i<=n;i++){
scanf("%s",c+1);
memset(sum1,0,sizeof sum1);
memset(sum2,0,sizeof sum2);
for(int j=1;j<=m;j++){
if(c[j]=='1')sum1[j]=sum1[j-1]+1,sum2[j]=sum2[j-1];
else sum2[j]=sum2[j-1]+1,sum1[j]=sum1[j-1];
}
for(int l=1;l<=min(t,m);l++)
for(int j=1;j<=m;j++)
for(int k=0;k<j;k++)
f[i][j][l]=max(f[i][j][l],f[i][k][l-1]+max(sum1[j]-sum1[k],sum2[j]-sum2[k]));
}
} int main(){
n=read(); m=read(); t=read(); pre();
for(int i=1;i<=n;i++)
for(int j=t;j>=0;j--)
for(int k=1;k<=min(t,m);k++)
if(j-k>=0)
F[j]=max(F[j],F[j-k]+f[i][m][k]);
printf("%d\n",F[t]);
return 0;
}

背包 DP【洛谷P4158】 [SCOI2009]粉刷匠的更多相关文章

  1. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  2. 洛谷P4158 [SCOI2009]粉刷匠

    传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...

  3. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  4. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  5. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  6. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  8. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  9. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

随机推荐

  1. 转:MongoDB · 引擎特性 · journal 与 oplog,究竟谁先写入?

    转:MongoDB · 引擎特性 · journal 与 oplog,究竟谁先写入? 数据库内核月报 链接:http://mysql.taobao.org/monthly/2018/05/07/ Mo ...

  2. 用nfs挂载内核时出错 ERROR: Cannot umount的解决办法

    SMDK2440 # nfs 30000000 192.168.1.106:/work/nfs_root/uImage                         ERROR: resetting ...

  3. 环形缓冲区的应用ringbuffer

    在嵌入式开发中离不开设备通信,而在通信中稳定性最高的莫过于环形缓冲区算法, 当读取速度大于写入速度时,在环形缓冲区的支持下不会丢掉任何一个字节(硬件问题除外). 在通信程序中,经常使用环形缓冲区作为数 ...

  4. Facebook开源的JavaScript库:React

    React是Facebook开源的JavaScript库,采用声明式范例,可以传递声明代码,最大限度地减少与DOM的交互. React是Facebook开源的JavaScript库,用于构建UI.你可 ...

  5. 新版本Ubuntu本地提权漏洞复现

    该漏洞在老版本中被修复了,但新的版本还存在漏洞 影响范围:Linux Kernel Version 4.14-4.4,Ubuntu/Debian发行版本 Exp下载地址:http://cyseclab ...

  6. 2015.3.5 VS2005调用VC6 dll 时结构参数的传递

    结构只能以地址方式进行传递,dll只能传递结构不能传递类 VS端: [DllImport(@"D:\程序\VC程序\MfcDllspace\Debug\space.dll")] p ...

  7. Changing Controller Numbers in Solaris

    If you need to change the controller numbers (c#) that a disk has assigned to it, whether it is for ...

  8. How to clear fmadm log or FMA faults log (ZT)

    Here are the step by step of clearing the FMA faults on most of Oracle/Sun server. Work perfectly on ...

  9. Linux-CentOS 学习的坎坷路 (一) 网络配置篇

    自己学习的地址:http://www.imooc.com/view/175 学到2.8章节,配置IP这一块,妈蛋,他直接跳过了,都不知道怎么配置,无奈,只能Search 先是找到配置IP的方法: ht ...

  10. Linux 2.6 中的文件锁

    简介: 本文的目的是想帮助读者理清 Linux 2.6中文件锁的概念以及 Linux 2.6 都提供了何种数据结构以及关键的系统调用来实现文件锁,从而可以帮助读者更好地使用文件锁来解决多个进程读取同一 ...