P4158 [SCOI2009]粉刷匠

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。

windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

发现每一行都没有关系。

那么就是一个很显然的分组背包。

把每一行看成一个物品。

那么就需要预处理出来每一行刷i次合法的最大答案。

预处理用暴力DP就可以。

一定分析复杂度,先按暴力来。

code:

#include <iostream>
#include <cstdio>
#include <cstring> #define debug puts(""); using namespace std; const int wx=3017; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} int n,m,t,num;
char c[wx],cc[wx][wx];
int zmj[wx],mm[wx],sum1[wx],sum2[wx];
int f[51][51][wx];
int F[wx]; void pre(){
for(int i=1;i<=n;i++){
scanf("%s",c+1);
memset(sum1,0,sizeof sum1);
memset(sum2,0,sizeof sum2);
for(int j=1;j<=m;j++){
if(c[j]=='1')sum1[j]=sum1[j-1]+1,sum2[j]=sum2[j-1];
else sum2[j]=sum2[j-1]+1,sum1[j]=sum1[j-1];
}
for(int l=1;l<=min(t,m);l++)
for(int j=1;j<=m;j++)
for(int k=0;k<j;k++)
f[i][j][l]=max(f[i][j][l],f[i][k][l-1]+max(sum1[j]-sum1[k],sum2[j]-sum2[k]));
}
} int main(){
n=read(); m=read(); t=read(); pre();
for(int i=1;i<=n;i++)
for(int j=t;j>=0;j--)
for(int k=1;k<=min(t,m);k++)
if(j-k>=0)
F[j]=max(F[j],F[j-k]+f[i][m][k]);
printf("%d\n",F[t]);
return 0;
}

背包 DP【洛谷P4158】 [SCOI2009]粉刷匠的更多相关文章

  1. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  2. 洛谷P4158 [SCOI2009]粉刷匠

    传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...

  3. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  4. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  5. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  6. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  8. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  9. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

随机推荐

  1. Excel开发学习笔记:新建文档级的excel解决方案

    工作中遇到一个数据处理自动化的问题,于是打算开发一个基于excel的小工具.在业余时间一边自学一边实践,最近终于完成了雏形.抽空把一些知识写下来以备今后参考,因为走的是盲人摸象的野路子,幼稚与错误请多 ...

  2. 侯捷STL学习(三)--分配器测试

    第七节:分配器测试 标准的分配器Allocator,#include<ext/...>都是拓展的 可以用不同的分配器测试同一容器 分配器allocate() & deallocat ...

  3. 开发环境入门 linux基础 (部分)nginx和nfs

    nginx和nfs 复习总结 rpm -ivh 软件包 --nodeps (没有依赖性安装) rpm -ivh 软件包 --force (覆盖安装) yum -y upgrade 升级所有包,不改变软 ...

  4. .Net Memory Profiler入门

    简介:http://www.cnblogs.com/wmlunge/archive/2013/01/08/2850809.html 实践: http://www.cnblogs.com/eaglet/ ...

  5. SpringMVC中使用forward和redirect进行转发和重定向以及重定向时如何传参详解

    转自:http://blog.51cto.com/983836259/1877188 2016-11-28 09:45:59   如题所示,在SpringMVC中可以使用forward和redirec ...

  6. eclipse利用mybatis-generator生成代码

    由于mybatis是半自动的ORM框架,表到POJO的映射可以由mybatis-generator完成,映射文件也可以由它生成,下面介绍生成步骤: 1.新建maven项目:File->Other ...

  7. 万恶的mysql deadlocks

    https://github.com/aneasystone/mysql-deadlocks/blob/master/11.md https://blog.csdn.net/dhfzhishi/art ...

  8. php 如何禁用eval() 函数实例详解

    在php中eval是一个函数并且不能直接禁用了,但eval函数又相当的危险并经常会出现一些问题,今天我们就一起来看看eval函数对数组的操作及php 如何禁用eval() 函数: <?php $ ...

  9. 1-3 分布式系统的瓶颈以及zk的相关特性

  10. Codeforces 960F 线段树

    题意:https://blog.csdn.net/qq_39809664/article/details/79871282 思路:我们考虑LIS的状态转移,对于这个题,假设现在扫描到的边是(u, v, ...