本文转载至链接:https://blog.csdn.net/u010899985/article/details/80981053

一、AVL树(平衡二叉树)

(1)简介

AVL树是带有平衡条件的二叉查找树,一般是用平衡因子差值判断是否平衡并通过旋转来实现平衡,左右子树高度差不超过1,和红黑树相比,AVL树是严格的平衡二叉树,平衡条件必须满足(所有结点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保存平衡,而因为旋转非常耗时,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况

(2)局限性

由于维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果应用场景中对插入删除不频繁,只是对查找要求较高,那么AVL还是较优于红黑树。

(3)应用

1.Windows NI内核中广泛存在;

二、红黑树

(1)简介

一种二叉查找树,但在每个节点增加一个存储位表示结点的颜色,可以是红或黑(非红即黑)。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因此,红黑树是一中弱平衡二叉树(由于是弱平衡,可以看到,在相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数少,插入最多两次旋转,删除最多三次旋转,所以对于搜索,插入,删除操作较多的情况下,我们就用红黑树。

(2)性质

(1)结点非红即黑

(2)根结点是黑色的

(3)每个叶子节点(NULL节点)是黑色的

(4)每个红色节点的两个子节点都是黑色的。(不能有两连续的红色节点)

(5)从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

注意:性质(5)保证红黑树的最长路径不超过最短路径的两倍。

(3)应用

1、广泛应用于C++的STL中,map和set底层都是用红黑树实现的。

转:红黑树和AVL树(平衡二叉树)区别的更多相关文章

  1. 红黑树和AVL树的区别(转)

    add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 ...

  2. 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别

    1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...

  3. 红黑树与AVL(平衡二叉树)的区别

    关于红黑树和AVL树,来自网络: 1 好处 及 用途 红黑树 并不追求“完全平衡 ”——它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以 O(log2  n)  的时间复 ...

  4. 红黑树和AVL树的实现与比较-----算法导论

    一.问题描述 实现3种树中的两种:红黑树,AVL树,Treap树 二.算法原理 (1)红黑树 红黑树是一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black.红黑树满足以 ...

  5. 红黑树与AVL树

    概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...

  6. B树、B+树、红黑树、AVL树

    定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2. ...

  7. Linux内核之于红黑树and AVL树

    为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2- ...

  8. 红黑树和AVL树

    在此之前,我没有了解过红黑树以及AVL tree,真是孤陋寡闻.如果你也在学习的话,我们一起进步. 如果,你很急,那么只看红色加粗即可. 1.红黑树(RB-tree) 红黑树是一种特殊的二叉搜索树,特 ...

  9. B树、B+树、红黑树、AVL树比较

    B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由 ...

随机推荐

  1. 案例四:Shell脚本生成随机密码

    生成随机密码(urandom版本) #!/bin/bash #Author:丁丁历险(Jacob) #/dev/urandom文件是Linux内置的随机设备文件 #cat /dev/urandom可以 ...

  2. node-java的使用及源码分析

    上篇文章简单提了下node调用java的方法但也只属于基本提了下怎么输出helloworld的层度,这次将提供一些案例和源码分析让我们更好地了解如何使用node-java库. 前置知识: 1.桥接模式 ...

  3. ABP 使用ElasticSearch、Kibana、Docker 进行日志收集

    ABP 使用ElasticSearch.Kibana.Docker 进行日志收集 后续会根据公司使用的技术,进行技术整理分享,都是干货哦别忘了关注我!!! 最近领导想要我把项目日志进行一个统一收集,因 ...

  4. Python:PIL(三)——Image

    学习自:PIL官方文档--Image (2条消息) Python图像处理PIL各模块详细介绍_章子雎的博客-CSDN博客 一.Image模块 1.open 用法 open(fp,mode='r',fo ...

  5. ubuntu 下的ftp安装及root身份远程配置

    第一步:在 Ubuntu 中安装 VSFTPD 服务器 //安装 VSFTPD 二进制包 $ sudo apt-get update $ sudo apt-get install vsftpd //使 ...

  6. JAVA——转义字符

    目录 1.Java转义字符 2.Java中的注释 2.1Java 中的注释类型 2.2文档注释 3.Java代码规范 4.Java开发注意事项和细节说明 1.Java转义字符 在控制台,输入 tab ...

  7. 微服务从代码到k8s部署应有尽有系列(十三、服务监控)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  8. 在矩池云上复现 CVPR 2018 LearningToCompare_FSL 环境

    这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://git ...

  9. GAN实战笔记——第七章半监督生成对抗网络(SGAN)

    半监督生成对抗网络 一.SGAN简介 半监督学习(semi-supervised learning)是GAN在实际应用中最有前途的领域之一,与监督学习(数据集中的每个样本有一个标签)和无监督学习(不使 ...

  10. vivo鲁班RocketMQ平台的消息灰度方案

    一.方案背景 RocketMQ(以下简称MQ)作为消息中间件在事务管理,异步解耦,削峰填谷,数据同步等应用场景中有着广泛使用.当业务系统进行灰度发布时,Dubbo与HTTP的调用可以基于业界通用的灰度 ...