推荐 的FPGA设计经验(3) 物理实现和时间闭环优化
Optimizing Physical Implementation and Timing Closure
Planning Physical Implementation
When planning a design, consider the following elements of physical implementation:
• The number of unique clock domains and their relationships
• The amount of logic in each functional block
• The location and direction of data flow between blocks
• How data routes to the functional blocks between I/O interfaces
When adding register stages to pipeline control signals, turn off the Auto Shift Register Replacement
option (Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis)) for these registers. By default, chains of registers can be converted to a RAM-based implementation based on
performance and resource estimates.
Planning FPGA Resources
Plan functional blocks with appropriate global, regional, and dual-regional network signals in mind.
When floorplanning a design, consider the balance of different types of device resources, such as memory, logic, and DSP blocks in the main functional blocks.
Optimizing Timing Closure
You can use physical synthesis optimizations for combinational logic, register retiming, and register duplication techniques to optimize your design for timing closure.
Click Assignments > Settings > Compiler Settings > Advanced Settings (Fitter) to turn on physical
synthesis options.
• Physical synthesis for combinational logic—When the Perform physical synthesis for combinational logic is turned on, the report panel identifies logic that physical synthesis can modify. You can use this information to modify the design so that the associated optimization can be turned off to save compile time.
• Register duplication—This technique is most useful where registers have high fan-out, or where the fan-out is in physically distant areas of the device. Review the netlist optimizations report and consider manually duplicating registers automatically added by physical synthesis. You can also locate the original and duplicate registers in the Chip Planner. Compare their locations, and if the fan-out is improved, modify the code and turn off register duplication to save compile time.
• Register retiming—This technique is particularly useful where some combinatorial paths between registers exceed the timing goal while other paths fall short. If a design is already heavily pipelined, register retiming is less likely to provide significant performance gains since there should not be significantly unbalanced levels of logic across pipeline stages.
The application of appropriate timing constraints is essential to timing closure. Use the following
general guidelines in applying timing constraints:
• Apply multicycle constraints in your design wherever single-cycle timing analysis is not required.
• Apply False Path constraints to all asynchronous clock domain crossings or resets in the design. This technique prevents overconstraining and the Fitter focuses only on critical paths to reduce compile time. However, over constraining timing critical clock domains can sometimes provide better timing results and lower compile times than physical synthesis.
• Overconstrain rather than using physical synthesis when the slack improvement from physical
synthesis is near zero. Overconstrain the frequency requirement on timing critical clock domains by using setup uncertainty.
• When evaluating the effect of constraint changes on performance and runtime, compile the design with at least three different seeds to determine the average performance and runtime effects. Different constraint combinations produce various results. Three samples or more establishes a performance trend. Modify your constraints based on performance improvement or decline.• Leave settings at the default value whenever possible. Increasing performance constraints can increase the compile time significantly. While those increases may be necessary to close timing on a design, using the default settings whenever possible minimizes compile time.
Optimizing Critical Timing Paths
Review the register placement and routing paths by clicking Tools > Chip Planner. Large timing failures
on high fan-out control signals can be caused by any of the following conditions:
• Sub-optimal use of global networks
• Signals that traverse the chip on local routing without pipelining
• Failure to correct high fan-out by register duplication
For high-speed and high-bandwidth designs, optimize speed by reducing bus width and wire usage. To reduce wire use, move the data as little as possible.
推荐 的FPGA设计经验(3) 物理实现和时间闭环优化的更多相关文章
- 推荐 的FPGA设计经验(4) 时钟和寄存器控制架构特性使用
Use Clock and Register-Control Architectural Features FPGAs provide device-wide clocks and register ...
- 推荐 的FPGA设计经验(1)组合逻辑优化
主要内容摘自Quartus prime Recommended Design Practices For optimal performance, reliability, and faster ti ...
- 推荐 的FPGA设计经验(2)-时钟策略优化
Optimizing Clocking Schemes Avoid using internally generated clocks (other than PLLs) wherever possi ...
- 至芯FPGA培训中心-1天FPGA设计集训(赠送FPGA开发板)
至芯FPGA培训中心-1天FPGA设计集训(赠送开发板) 开课时间2014年5月3日 课程介绍 FPGA设计初级培训班是针对于FPGA设计技术初学者的课程.课程不仅是对FPGA结构资源和设计流程的描述 ...
- FPGA设计思想与技巧(转载)
题记:这个笔记不是特权同学自己整理的,特权同学只是对这个笔记做了一下完善,也忘了是从那DOWNLOAD来的,首先对整理者表示感谢.这些知识点确实都很实用,这些设计思想或者也可以说是经验吧,是很值得每一 ...
- 【设计经验】2、ISE中ChipScope使用教程
一.软件与硬件平台 软件平台: 操作系统:Windows 8.1 开发套件:ISE14.7 硬件平台: FPGA型号:XC6SLX45-CSG324 二.ChipScope介绍 ChipScope是X ...
- 【转】 FPGA设计的四种常用思想与技巧
本文讨论的四种常用FPGA/CPLD设计思想与技巧:乒乓操作.串并转换.流水线操作.数据接口同步化,都是FPGA/CPLD逻辑设计的内在规律的体现,合理地采用这些设计思想能在FPGA/CPLD设计工作 ...
- FPGA 设计流程,延迟,时间
FPGA 设计流程,延迟,时间 流程:每个时钟周期可以传输的数据比特. 延迟:从输入到时钟周期的输出数据需要经验. 时间:两个元件之间的最大延迟,最高时钟速度. 1 採用流水线能够提高 流量: 比如计 ...
- FPGA设计方法检查表
-----------------------摘自<FPGA软件测试与评价技术> 中国电子信息产业发展研究院 | 编著------------------------------- 文本格 ...
随机推荐
- Linux 系统查看tomcat控制台命令
前提进入tomcat/logs文件夹下 查看全部命令是:tail -f catalina.out 如果想查看具体文件的日志进入该文件所在目录然后命令如下: tail -f filename
- 迷宫问题——BFS
改进版 BFS #include <bits/stdc++.h> using namespace std; #define coordi(x,y) ( m*(x-1)+y ) const ...
- Java 中 Vector 和 ArrayList 的区别
首先看这两类都实现List接口,而List接口一共有三个实现类,分别是ArrayList.Vector和LinkedList.List用于存放多个元素,能够维护元素的次序,并且允许元素的重复.3个具体 ...
- The Binder Architecture
The Binder Architecture is a declarative architecture for iOS development inspired by MVVM and VIPER ...
- PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...
- CVPR 2016 paper reading (2)
1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...
- jpa多条件查询
首先继承JpaSpecificationExecutor<T>接口 需要用到JpaSpecificationExecutor<T>中的Page<T> findAll ...
- ORM优缺点
优点: 1.提高了开发效率.由于ORM可以自动对Entity对象与数据库中的Table进行字段与属性的映射,所以我们实际可能已经不需要一个专用的.庞大的数据访问层. 2.ORM提供了对数据库的映射,不 ...
- mac使用brew安装配置常见测试工具
Homebrew 包管理工具可以让你安装和更新程序变得更方便,目前在 OS X 系统中最受欢迎的包管理工具是 Homebrew. 安装 在安装 Homebrew 之前,需要将 Xcode Comman ...
- Jmeter--HTTPS请求
(1)新建threadGroup: (2)设置并发用户数量: (3) ...