题面

BZOJ传送门

思路

首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_12+y_12})$内

显然有:$x_12+y_12\geq (x_0-x_1)2+(y_0-y_1)2$

化简:$2x_0x_1+2y_0y_1\geq x_02+y_02$

所有含$x_1,y_1$的项挪到同一边,除掉一个$2y_0$(假设它是正的),得到:

$y_1\geq -\frac{x_0}{y_0}x_1+\frac{x_02+y_02}{2y_0}$

如果是负的:

$y_1\leq -\frac{x_0}{y_0}x_1+\frac{x_02+y_02}{2y_0}$

DUANG!半平面来了

那么现在的询问变成了:给定一个半平面,问是不是所有的点都在这个半平面的上方(或者下方)

显然,我们如果维护了所有输入节点的上下凸包,这个问题就迎刃而解了

众所周知,维护动态上下凸壳可以用$set$或者平衡树做到$O(n\log n)$

然而博主并不想写这种东西

所以他写了非常沙雕的cdq分治23333

分治

分治开始之前先按照所有询问点的斜率排个序(非询问点不管)

我们对时间顺序分治

进入分治后,首先分治左区间,返回按照横坐标排好序的左区间所有点

求出左区间中所有非询问的点的上下凸壳

然后对右边的所有询问,因为一开始排好序了,所以直接在凸壳上顺次双指针过去

注意:$y_0 > 0$的时候所有点在直线上方,用的是下凸包,反之亦然

最后分治右区间,按照x坐标归并排序,合并左右区间

就是个很模板的cdq斜率分治

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<cmath>
#define sqr(x) ((x)*(x))
#define eps 1e-10
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
struct node{
double x,y,k;
int id,qid,op;
inline friend double slope(const node &a,const node &b){return ((fabs(a.x-b.x)<eps)?(1e30):((a.y-b.y)/(a.x-b.x)));}
inline friend double dis(const node &a,const node &b){return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));}
inline friend double rad(const node &a){return sqrt(sqr(a.x)+sqr(a.y));}
}a[500010],tmp[500010],q1[500010],q2[500010];//q1 up q2 down
int n,top1,top2;bool ans[500010];
inline bool cmp(const node &a,const node &b){return a.k<b.k;}
void solve(int l,int r){
if(l==r) return;
int i,t1,t2,mid=(l+r)>>1; t1=l;t2=mid+1;
for(i=l;i<=r;i++){
if(a[i].id<=mid) tmp[t1++]=a[i];
else tmp[t2++]=a[i];
}
memcpy(a+l,tmp+l,sizeof(node)*(r-l+1)); solve(l,mid); top1=top2=0;
for(i=l;i<=mid;i++){
if(a[i].op) continue;
while(top1>1&&slope(q1[top1-1],q1[top1])<slope(q1[top1],a[i])+eps) top1--;
q1[++top1]=a[i];
while(top2>1&&slope(q2[top2-1],q2[top2])+eps>slope(q2[top2],a[i])) top2--;
q2[++top2]=a[i];
} t1=t2=1;
for(i=mid+1;i<=r;i++){
if(!a[i].op) continue;
if(a[i].y>0){
while(t2<top2&&slope(q2[t2],q2[t2+1])<a[i].k) t2++;
if(t2<=top2) ans[a[i].qid]&=(dis(a[i],q2[t2])<rad(q2[t2]));
}
else{
while(t1<top1&&slope(q1[top1-1],q1[top1])<a[i].k) top1--;
if(t1<=top1) ans[a[i].qid]&=(dis(a[i],q1[top1])<rad(q1[top1]));
}
} solve(mid+1,r); t1=l;t2=mid+1;
for(i=l;i<=r;i++){
if(t2==r+1||(t1<=mid&&a[t1].x<a[t2].x)) tmp[i]=a[t1++];
else tmp[i]=a[t2++];
}
memcpy(a+l,tmp+l,sizeof(node)*(r-l+1));
}
int main(){
n=read();int i,flag=0,cntq=0;
for(i=1;i<=n;i++){
scanf("%d%lf%lf",&a[i].op,&a[i].x,&a[i].y);
a[i].id=i;
if(a[i].op){
a[i].qid=++cntq;
if(flag) ans[cntq]=1;
if(a[i].y) a[i].k=-a[i].x/a[i].y;
else a[i].k=1e30;
}
else flag=1;
}
sort(a+1,a+n+1,cmp);
solve(1,n);
for(i=1;i<=cntq;i++) puts(ans[i]?"Yes":"No");
}

[BZOJ2961] 共点圆 [cdq分治+凸包]的更多相关文章

  1. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  2. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  3. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  4. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  5. Bzoj2149拆迁队:cdq分治 凸包

    国际惯例的题面:我们考虑大力DP.首先重新定义代价为:1e13*选择数量-(总高度+总补偿).这样我们只需要一个long long就能维护.然后重新定义高度为heighti - i,这样我们能选择高度 ...

  6. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  7. [BZOJ2961]共点圆-[凸包+cdq分治]

    Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...

  8. bzoj 2961 共点圆 cdq+凸包+三分

    题目大意 两种操作 1)插入一个过原点的圆 2)询问一个点是否在所有的圆中 分析 在圆中则在半径范围内 设圆心 \(x,y\) 查询点\(x_0,y_0\) 则\(\sqrt{(x-x_0)^2+(y ...

  9. 【bzoj2961】共点圆 k-d树

    更新:此题我的代码设置eps=1e-8会WA,现在改为1e-9貌似T了 此题网上的大部分做法是cdq分治+凸包,然而我觉得太烦了,于是自己口胡了一个k-d树做法: 加入一个圆$(x,y)$,直接在k- ...

随机推荐

  1. Mac下node.js安装与卸载

    安装: 访问 http://nodejs.org/ 进入官网,下载 Mac 版本的 node.js,双击打开安装即可. 通过终端输入命令 node -v 验证 node 是否安装正确:npm -v 验 ...

  2. Java+Selenium 3.x 实现Web自动化 - 1.自动化准备

    (一)自动化准备 说明:本文主要记录了基于公司现有项目(一个电子商务平台),从0开始实现UI自动化的历程.从准备阶段,部分内容直接省略了基础知识,一切以最终做成自动化项目为目标,难免会有晦涩之处.文章 ...

  3. JAVA基础学习之路(二)方法定义,重载,递归

    一,方法的定义: package test; public class test1 { public static void main(String args[]) { int result = ad ...

  4. MR execution in YARN

    Overview YARN provides API not for application developers but for the great developers working on ne ...

  5. eos智能合约开发最佳实践

    安全问题 1.可能的错误 智能合约终止 限制转账限额 限制速率 有效途径来进行bug修复和提升 2.谨慎发布智能合约 对智能合约进行彻底的测试 并在任何新的攻击手法被发现后及时制止 赏金计划和审计合约 ...

  6. LINUX监控一:监控命令

    简单的整理一下常用的linux监控命令 本篇参考了:http://www.cnblogs.com/JemBai/archive/2010/07/30/1788484.html的内容 1.top top ...

  7. Centos6配置开启FTP Server

    vsftpd作为FTP服务器,在Linux系统中是非常常用的.下面我们介绍如何在centos系统上安装vsftp. 什么是vsftpd vsftpd是一款在Linux发行版中最受推崇的FTP服务器程序 ...

  8. 自学系列--git的基础简介

    上学期第一次接触git,感觉挺难的,我们都知道这个非常重要,自己对git也自学了一段时间,下面这是对自学内容的总结,拿出来和大家一块交流一下,让我们一起成长吧! 一 git简介 Git是一个开源的分布 ...

  9. java — 值传递和引用传递

    在 Java 应用程序中永远不会传递对象,而只传递对象引用.因此是按引用传递对象.Java 应用程序按引用传递对象这一事实并不意味着 Java 应用程序按引用传递参数.参数可以是对象引用,而 Java ...

  10. 用SC命令 添加或删除windows服务提示OpenSCManager 失败5 拒绝访问

    在安装命令行中安装  windowsOpenSCManager 失败5  的错误,原因是当前用户的权限不足,需要做的是在注册表 HKEY_LOCAL_MACHINE\Software\Microsof ...