【BZOJ1486】最小圈(分数规划)
【BZOJ1486】最小圈(分数规划)
题面
题解
分数规划
二分答案之后将边权修改为边权减去二分值
检查有无负环即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define ll long long
#define RG register
#define MAX 3003
struct Line{int v,next;double w;}e[10010];
int h[MAX],cnt=1;
inline void Add(int u,int v,double w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int n,m,U,V;
double dis[MAX],W;
bool vis[MAX];
bool SPFA(int u,double mid)
{
vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w-mid)
{
dis[v]=dis[u]+e[i].w-mid;
if(vis[v]||SPFA(v,mid))return true;
}
}
vis[u]=false;return false;
}
bool check(double mid)
{
for(int i=1;i<=n;++i)dis[i]=0,vis[i]=false;
for(int i=1;i<=n;++i)if(SPFA(i,mid))return true;
return false;
}
int main()
{
scanf("%d%d",&n,&m);
double l=+2e7,r=-2e7;
for(int i=1;i<=m;++i)
{
scanf("%d%d%lf",&U,&V,&W);
l=min(l,W),r=max(r,W),Add(U,V,W);
}
while(r-l>1e-9)
{
double mid=(l+r)/2;
if(check(mid))r=mid;
else l=mid;
}
printf("%.8lf\n",l);
return 0;
}
【BZOJ1486】最小圈(分数规划)的更多相关文章
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- Luogu3199 HNOI2009 最小圈 分数规划、SPFA
传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
随机推荐
- centos下php环境安装redis
一.安装redis(仅可在服务器使用,尚不能通过浏览器访问) (1)首先下载redis:wget http://download.redis.io/releases/redis-4.0.9.tar.g ...
- 浅谈如何提高自动化测试的稳定性和可维护性 (pytest&allure)
装饰器与出错重试机制 谈到稳定性,不得不说的就是“出错重试”机制了,在自动化测试中,由于环境一般都是测试环境,经常会有各种各种的抽风情况影响测试结果,这样就为测试的稳定性带来了挑战,毕竟谁也不想自己的 ...
- Linux命令应用大词典-第16章 归档和压缩
16.1 tar:进行归档和压缩 16.2 gzip:压缩或解压缩gzip文件 16.3 gunzip:解压缩gzip文件 16.4 zcmp:比较gzip压缩文件 16.5 zdiff:比较gzip ...
- 第六模块:WEB框架开发 第1章·Django框架开发1~50
01-Django基础介绍 02-Web应用程序1 03-Web应用程序2 04-http请求协议1 05-http请求协议2 06-http协议之响应协议 07-wsgire模块1 08-wsgir ...
- 【cookie接口】- jmeter - (请求提示no cookie)
1.虽然 请求成功 响应码 200 ,但是 返回code 1 ,表示接口不成功 2.加入 空的cookie 管理器就可以了 返回 code 0 注意:状态码 200 只是表示请求是成功的 , ...
- docker创建redis镜像
pull redis 镜像 创建redis的镜像有几种方式,可以直接从仓库中拉取,也可以采用dockerfile文件自己编译创建. 基于已有的redis镜像,docker可以采用run,或者creat ...
- (转载)IE8+兼容经验小结
本文分享下我在项目中积累的IE8+兼容性问题的解决方法.根据我的实践经验,如果你在写HTML/CSS时候是按照W3C推荐的方式写的,然后下面的几点都关注过,那么基本上很大一部分IE8+兼容性问题都OK ...
- 最短路径——floyd(多源最短路径)
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> ...
- 静态类型&动态类型
何时使用:使用存在继承关系的类型时,必须将一个变量或其他表达式的静态类型与该表达式表示对象的动态类型区分开来 静态类型:表达式的静态类型在编译时总是已知的,它是变量声明时的类型或表达式生成的类型 动态 ...
- Coins and Queries(map迭代器+贪心)
题意 n个硬币,q次询问.第二行给你n个硬币的面值(保证都是2的次幂!).每次询问组成b块钱,最少需要多少个硬币? Example Input 5 42 4 8 2 4851410 Output 1- ...