考试的时候考的一道题,感觉挺神的.
我们发现将所有数去重后最多只会选不到 $7$ 后 $gcd$ 就会变成 $1$.
令 $f[i][k]$ 表示选 $i$ 个数后 $gcd$ 为 $k$ 的方案数.
那么这 $i$ 个数中每个数都必须是 $k$ 的倍数.
令 $cnt[k]$ 为所有数中是 $k$ 的倍数的个数,这个可以在接近线性的时间内求出.
那么,选 $i$ 个数的总方案数位 $C_{cnt[k]}^{i}$,不和法的方案为这 $i$ 个数的 $gcd$ 是大于 $k$ 的,即 $k$ 的倍数.
所以,综上,$f[i][k]=C_{cnt[k]}^{i}-\sum f[i][k\times d]$ ( $d$ 随便枚举一下就行).

#include <cstdio>
#include <algorithm>
#define ll long long
#define N 300002
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll fac[N],inv[N];
int arr[N],cnt[N],f[12][300001];
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;base=base*base%mod,k>>=1) tmp=tmp*base%mod;
return tmp;
}
ll C(int n,int m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
int i,j,n,M=0;
// setIO("input");
scanf("%d",&n);
for(i=1;i<=n;++i)
{
scanf("%d",&arr[i]), cnt[arr[i]]++, f[1][arr[i]]++;
M=max(M,arr[i]);
if(arr[i]==1)
{
printf("1\n");
return 0;
}
}
fac[0]=1;
for(i=1;i<N;++i) fac[i]=1ll*fac[i-1]*i%mod;
inv[N-1]=qpow(fac[N-1],mod-2);
for(i=N-1;i>=1;--i) inv[i-1]=i*inv[i]%mod;
for(i=1;i<=M;++i)
for(j=i+i;j<=M;j+=i) cnt[i]+=cnt[j];
for(i=2;i<=11;++i)
{
for(j=M;j>=1;--j)
{
f[i][j]=C(cnt[j], i);
for(int k=j+j;k<=M;k+=j) f[i][j]=(f[i][j]-f[i][k]+mod)%mod;
}
if(f[i][1]>0)
{
printf("%d\n",i);
return 0;
}
}
printf("-1\n");
return 0;
}

  

CF1043F Make It One 容斥+dp+组合的更多相关文章

  1. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  2. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  3. hdu6143 Killer Names 容斥+排列组合

    /** 题目:hdu6143 Killer Names 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:有m种字符(可以不用完),组成两个长度 ...

  4. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  5. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  6. 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)

    [BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...

  7. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  8. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  9. BZOJ.4767.两双手(组合 容斥 DP)

    题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...

随机推荐

  1. [转] Python中的装饰器(decorator)

    想理解Python的decorator首先要知道在Python中函数也是一个对象,所以你可以 将函数复制给变量 将函数当做参数 返回一个函数 函数在Python中和变量的用法一样也是一等公民,也就是高 ...

  2. 链表-简单练习题1-数据结构实验之链表一:顺序建立链表 SDUT2117

    Problem Description 输入N个整数,按照输入的顺序建立单链表存储,并遍历所建立的单链表,输出这些数据. Input 第一行输入整数的个数N:第二行依次输入每个整数. Output 输 ...

  3. Html table 插入图像填充整个单元格

    把image的display属性设置为block就可以了

  4. HYSBZ 1797 Mincut 最小割

    Descrption A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站, ...

  5. centos 7 源码安装 mysql 5.6

    下载 mysql 安装包 $ wget https://cdn.mysql.com//Downloads/MySQL-5.6/mysql-5.6.44.tar.gz # or $ curl -O ht ...

  6. JavaScript更改css样式

    来源:https://www.w3school.com.cn/js/js_htmldom_css.asp 1, document.getElementById(id).style.property = ...

  7. 面试题1-十进制数转化为十六进制数,不使用hex方法

    问题: 给定一个整数,写一个算法将它转换为16进制,对于负数,可以使用two’s complement方法 def tohex(num): """十进制数转十六进制数&q ...

  8. python线程中的同步问题

    多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改1000000次,num的最终的结果应该为2000000.但是由于是多线程访问,有可能出现下面情 ...

  9. mysql索引失效的情况

    1.WHERE字句的查询条件里有不等于号(如:WHERE column!=...),MYSQL将无法使用索引: 2.WHERE字句的查询条件里使用了函数的列(如:WHERE DAY(column)=. ...

  10. SQL学习(一)之简介

    什么是 SQL? SQL 指结构化查询语言(Structured Query Language) SQL 使我们有能力访问数据库 SQL 是一种 ANSI 的标准计算机语言 SQL 能做什么? SQL ...