考试的时候考的一道题,感觉挺神的.
我们发现将所有数去重后最多只会选不到 $7$ 后 $gcd$ 就会变成 $1$.
令 $f[i][k]$ 表示选 $i$ 个数后 $gcd$ 为 $k$ 的方案数.
那么这 $i$ 个数中每个数都必须是 $k$ 的倍数.
令 $cnt[k]$ 为所有数中是 $k$ 的倍数的个数,这个可以在接近线性的时间内求出.
那么,选 $i$ 个数的总方案数位 $C_{cnt[k]}^{i}$,不和法的方案为这 $i$ 个数的 $gcd$ 是大于 $k$ 的,即 $k$ 的倍数.
所以,综上,$f[i][k]=C_{cnt[k]}^{i}-\sum f[i][k\times d]$ ( $d$ 随便枚举一下就行).

#include <cstdio>
#include <algorithm>
#define ll long long
#define N 300002
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll fac[N],inv[N];
int arr[N],cnt[N],f[12][300001];
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;base=base*base%mod,k>>=1) tmp=tmp*base%mod;
return tmp;
}
ll C(int n,int m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
int i,j,n,M=0;
// setIO("input");
scanf("%d",&n);
for(i=1;i<=n;++i)
{
scanf("%d",&arr[i]), cnt[arr[i]]++, f[1][arr[i]]++;
M=max(M,arr[i]);
if(arr[i]==1)
{
printf("1\n");
return 0;
}
}
fac[0]=1;
for(i=1;i<N;++i) fac[i]=1ll*fac[i-1]*i%mod;
inv[N-1]=qpow(fac[N-1],mod-2);
for(i=N-1;i>=1;--i) inv[i-1]=i*inv[i]%mod;
for(i=1;i<=M;++i)
for(j=i+i;j<=M;j+=i) cnt[i]+=cnt[j];
for(i=2;i<=11;++i)
{
for(j=M;j>=1;--j)
{
f[i][j]=C(cnt[j], i);
for(int k=j+j;k<=M;k+=j) f[i][j]=(f[i][j]-f[i][k]+mod)%mod;
}
if(f[i][1]>0)
{
printf("%d\n",i);
return 0;
}
}
printf("-1\n");
return 0;
}

  

CF1043F Make It One 容斥+dp+组合的更多相关文章

  1. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  2. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  3. hdu6143 Killer Names 容斥+排列组合

    /** 题目:hdu6143 Killer Names 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:有m种字符(可以不用完),组成两个长度 ...

  4. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  5. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  6. 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)

    [BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...

  7. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  8. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  9. BZOJ.4767.两双手(组合 容斥 DP)

    题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...

随机推荐

  1. [转帖]2015年时的新闻:Debian GNU/Hurd 2015 发布

    Debian GNU/Hurd 2015 发布 oschina 发布于 2015年04月30日 https://www.oschina.net/news/62004/debian-gnu-hurd-2 ...

  2. 传统Java Web(非Spring Boot)、非Java语言项目接入Spring Cloud方案--temp

    技术架构在向spring Cloud转型时,一定会有一些年代较久远的项目,代码已变成天书,这时就希望能在不大规模重构的前提下将这些传统应用接入到Spring Cloud架构体系中作为一个服务以供其它项 ...

  3. (public丶private丶protected) 的理解

    public(公有):公有的类成员可以在任何地方被访问. protected(受保护):受保护的类成员则可以被其自身以及其子类和父类访问. private(私有):私有的类成员则只能被其定义所在的类访 ...

  4. python 求从1加到100的和,join的用法

    li=[] def func3(x): li.append(str(x)) if x==1: return 1 return x+func3(x-1) # print(func3(100)) re=f ...

  5. vue组件添加事件@click.native

    1,给vue组件绑定事件时候,必须加上native ,否则会认为监听的是来自Item组件自定义的事件 2,等同于在子组件中:  子组件内部处理click事件然后向外发送click事件:$emit(&q ...

  6. Ubuntu 系统安装 Docker

    安装 Docker CE 有多种方法,下面是最简单的通过Docker仓库的安装方法,其他方法参见官方文档. 设置仓库 刷新软件包 sudo apt-get update 安装必要的软件包 sudo a ...

  7. JS实现把一个页面层数据传递到另一个页面的两种方式

    本博客整理了两种方式从一个页面层向另一个页面层传递参数. 一. 通过cookie方式 1. 传递cookie页面的html,此处命名为a.html 请输入用户名和密码: <input id=&q ...

  8. StandardWrapper

    Tomcat中有四种类型的Servlet容器,分别是 Engine.Host.Context.Wrapper,每个Wrapper实例表示一个具体的Servlet定义,StandardWrapper就是 ...

  9. python之排序(sort/sorted)

    大家都知道,python排序有内置的排序函数 sort() 和 高阶函数sorted() .但是它们有什么区别呢? 让我们先从这个函数的定义说起: sorted():该函数第一个参数iterable为 ...

  10. 韦东山嵌入式Linux学习笔记08--中断体系结构

    中断是什么? 举个栗子, 系统怎么知道你什么时候插入鼠标这个设备? 可以有两种处理方式: 1. 查询方式: 轮询去检测是否有设备插入; 2. 中断的方式 当鼠标插入这个事件发生时, 置位某个寄存器,告 ...