HDU 1159 Common Subsequence 最长公共子序列

题意

给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以。

解题思路

这个当然要使用动态规划了。

这里\(dp[i][j]\)代表第一个串的前\(i\)个字符和第二个串的前\(j\)个字符中最长的公共子序列的最长长度,递推关系如下:

\[d[i][j]= \begin{cases} dp[i-1][j-1]+1 & \text{if} &str1[i]==str2[j] \\ max(dp[i-1][j], dp[i][j-1]) & \text{if } &str1[i]!=str2[j] \end{cases}
\]

优化:这里我们看到,每次的\(dp[i][j]\)的更新仅需要当前前一行\(dp[i-1][j-1]\),\(dp[i-1][j]\)的值还有当前行的\(dp[i][j-1]\)的值,所以我们可以进行空间优化,开辟空间为\(dp[maxn][2]\)

代码实现

//带有空间优化的
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1005;
int dp[maxn][2];
char s1[maxn], s2[maxn];
int main()
{
int len1, len2;
while(scanf("%s %s", s1+1, s2+1)!=EOF)
{
memset(dp, 0, sizeof(dp));
len1=strlen(s1+1);
len2=strlen(s2+1);
int flag=0;
for(int i=1; i<=len1; i++)
{
for(int j=1; j<=len2; j++)
{
if(s1[i]==s2[j])
dp[j][flag]=dp[j-1][!flag]+1;
else
dp[j][flag]=max(dp[j][!flag], dp[j-1][flag]);
}
flag=!flag;
}
printf("%d\n", dp[len2][!flag]);
}
return 0;
}
//没有空间优化的代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1005;
int dp[maxn][2];
char s1[maxn], s2[maxn];
int main()
{
int len1, len2;
while(scanf("%s %s", s1+1, s2+1)!=EOF)
{
memset(dp, 0, sizeof(dp));
len1=strlen(s1+1);
len2=strlen(s2+1);
int flag=0;
for(int i=1; i<=len1; i++)
{
for(int j=1; j<=len2; j++)
{
if(s1[i]==s2[j])
dp[j][i%2]=dp[j-1][(i-1)%2]+1;
else
dp[j][i%2]=max(dp[j][(i-1)%2], dp[j-1][i%2]);
}
}
printf("%d\n", dp[len2][len1%2]);
}
return 0;
}

HDU 1159 Common Subsequence 最长公共子序列的更多相关文章

  1. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  2. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  3. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  4. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

  5. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  6. LCS修改版(Longest Common Subsequence 最长公共子序列)

    题目描述 作为一名情报局特工,Nova君(2号)有着特殊的传达情报的技巧.为了避免被窃取情报,每次传达时,他都会发出两句旁人看来意义不明话,实际上暗号已经暗含其中.解密的方法很简单,分别从两句话里删掉 ...

  7. POJ 1458 Common Subsequence 最长公共子序列

    题目大意:求两个字符串的最长公共子序列 题目思路:dp[i][j] 表示第一个字符串前i位 和 第二个字符串前j位的最长公共子序列 #include<stdio.h> #include&l ...

  8. LCS(Longest Common Subsequence)最长公共子序列

    最长公共子序列(LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题.这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置 .最长公共子序列问题是 ...

  9. PKU 1458 Common Subsequence(最长公共子序列,dp,简单)

    题目 同:ZJU 1733,HDU 1159 #include <stdio.h> #include <string.h> #include <algorithm> ...

随机推荐

  1. maven项目创建5 service层整合

    创建service相关文件 创建applicationContext-service.xml文件 <?xml version="1.0" encoding="UTF ...

  2. HGOI 20191106

    HGOI 20191106 t1 旅行家(traveller) 2s,256MB [题目背景] 小X热爱旅行,他梦想有一天可以环游全世界-- [题目描述] 现在小X拥有n种一次性空间转移装置,每种装置 ...

  3. Linux服务器pxe+kickstart部署无人值守安装

    一.    使用光盘镜像安装好一台Redhat6.8系统的虚拟机(图形化界面) 二.    部署相关服务程序 1.     安装并配置dhcpd服务程序 a)安装dhcp服务程序 b)对dhcp服务进 ...

  4. ubuntu开启ssh服务时,报:start:Unknown job : ssh

    这里是参考网站资料,并记录下. 如图所示: 解决方法: 输入以下命令即可 /usr/sbin/sshd mkdir /var/run/sshd /usr/sbin/sshd netstat -nlt ...

  5. 关键字transient是干啥的

    百度百科的解释: Java语言的关键字,变量修饰符,如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.换句话来说就是,用transient关键字标记的成员变量不参与序列化过程. ...

  6. pandas mean 返回 inf

    In [12]: np.finfo(np.float16).max Out[12]: 65500.0 In [15]: df['a']=np.array([656]*100) In [16]: df[ ...

  7. C++入门经典-例2.15-逗号表达式的应用

    1:代码如下: // 2.15.cpp : 定义控制台应用程序的入口点. #include "stdafx.h" #include<iostream> using na ...

  8. 【python】小型神经网络的搭建

    import numpy as np def sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / ...

  9. Scala学习(一)——基础语法

    Scala语言是一种面向对象语言,结合了命令式(imperative)和函数式(functional)编程风格,其设计理念是创造一种更好地支持组件的语言. 特性 多范式(Multi-Paradigm) ...

  10. [学习笔记] CNN与RNN方法结合

    CNN与RNN的结合 问题 前几天学习了RNN的推导以及代码,那么问题来了,能不能把CNN和RNN结合起来,我们通过CNN提取的特征,能不能也将其看成一个序列呢?答案是可以的. 但是我觉得一般直接提取 ...