Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T.

For example, consider the tree:

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1

7

2 6

1 2

1 4

4 5

3 7

3 1

Sample Output

1 2

题意:

给你一颗n个节点的数,让你求出树的重心以及以重心为根的子树中最大的子树节点个数。

思路:

紧扣树的重心的定义:

定义为:在树中招到一个节点,其所有子树中最大的子树节点个数最小,那么这个点就是树的重心,删除重心后,生成的多颗树尽可能的平衡。

性质:

1、树中所有点到某个点的距离的sum和,到重心的距离sum和是最小的。如果有两个重心,那么他们的距离sum和是一样的、

2、把两棵树通过一个边连接得到一颗新的树,那么新的树的重心在原来两个树的重心的路径上。

3、把一个树添加或删除一个叶子节点,那么它的重心最多移动一个边的距离。

我们根据“所有子树中最大的子树节点个数最小”,这个性质,在dfs整颗树的时候,用cntson[i] 数组记录第i个节点为根的子树节点个数

用在dfs函数用,用cnt记录 当前节点的最大子树节点个数。

那么直需要维护cnt中的最小值即可得到答案。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<int> son[maxn];
int t;
int n;
int ans1;
int ans2;
int cntson[maxn];
void dfs(int x,int pre)
{
cntson[x]=1;
int cnt=0;
// for(auto y:son[x])
for(int i=0;i<sz(son[x]);++i)
{
int y=son[x][i];
if(y!=pre)
{
dfs(y,x);
cntson[x]+=cntson[y];
cnt=max(cnt,cntson[y]);
}
}
cnt=max(cnt,n-cntson[x]);
if(cnt<ans2||(cnt==ans2&&x<ans1))
{
ans2=cnt;
ans1=x;
}
}
void init()
{
repd(i,1,n)
{
son[i].clear();
}
ans2=inf;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
scanf("%d",&t);
while(t--)
{
init();
scanf("%d",&n);
repd(i,2,n)
{
int u,v;
scanf("%d %d",&u,&v);
son[v].push_back(u);
son[u].push_back(v);
}
dfs(1,1);
printf("%d %d\n",ans1,ans2 );
}
return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Balancing Act POJ - 1655 (树的重心)的更多相关文章

  1. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  2. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  3. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  4. poj 1655 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13178   Accepted: 5565 De ...

  5. poj 1655 树的重心 && define注意事项

    http://blog.csdn.net/acdreamers/article/details/16905653 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果 ...

  6. POJ 1655 Balancing Act(求树的重心)

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

  7. I - Balancing Act POJ - 1655

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

  8. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  9. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

随机推荐

  1. C基础知识(1):基本数据类型

    C的基本数据类型包括整型和浮点型,长度及精度信息如下: #include <stdio.h> #include <limits.h> #include <float.h& ...

  2. gin框架教程:代码系列demo地址

    gin框架教程代码地址: https://github.com/jiujuan/gin-tutorial demo目录: 01quickstart 02parameter 03route 04midd ...

  3. 02-初识CSS

    一. CSS介绍 CSS:Cascading Style Sheet,层叠样式表.CSS的作用就是给HTML页面标签添加各种样式,定义网页的显示效果.简单一句话:CSS将网页内容和显示样式进行分离,提 ...

  4. python基础之列表list

    list常用命令:索引/切片:list[index] list[start_index:end_index]增:list.append(obj) list.insert(index,obj) list ...

  5. CDH目录

    配置文件都在:/etc/服务名, 看hadoop的classpath |grep conf /etc/hadoop/conf log都在: /var/log/服务名 看scm的log: tail -1 ...

  6. 【3.2】【mysql基本实验】mysql GTID复制(基于空数据的配置)

    概述:本质上和传统异步复制没什么区别,就是加了GTID参数. 且可以用传统的方式来配置主从,也可以用GTID的方式来自动配置主从. 这里使用GTID的方式来自动适配主从. 需要mysql5.6.5以上 ...

  7. 必备idea 插件plugins 提高编码效率

    最近发现了几个非常好用   提高编码效率 的idea 插件 跟大家分享一下 因为idea自带的插件下载可能连接不上服务器而导致插件下载失败,所以这里推荐使用引入外部插件的方式 插件包也给你们准备好了( ...

  8. JAVAEE 7 api.chm

    JAVAEE 7 api.chm 链接:https://pan.baidu.com/s/1LUD3oam5B-Hp8tdpfQYk2w 提取码:x1kc

  9. AcWing池塘计数

    这个题让我们求连通块得数数量,我考虑用flood fill算法. 也就是枚举这个地图每一个点,假如符合要求就bfs与这个点联通的点,并打上标记.结束后接着枚举没有被标记并且符号要求的点... 1.== ...

  10. <<C++ Primer>> 第 6 章 函数

    术语表 第 6 章 函数 二义性调用(ambiguous call): 是一种编译时发生的错误,造成二义性调用的原因时在函数匹配时两个或多个函数提供的匹配一样好,编译器找不到唯一的最佳匹配.    实 ...