Balancing Act POJ - 1655 (树的重心)
Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T.
For example, consider the tree:
Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.
For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.
Input
The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.
Output
For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.
Sample Input
1
7
2 6
1 2
1 4
4 5
3 7
3 1
Sample Output
1 2
题意:
给你一颗n个节点的数,让你求出树的重心以及以重心为根的子树中最大的子树节点个数。
思路:
紧扣树的重心的定义:
定义为:在树中招到一个节点,其所有子树中最大的子树节点个数最小,那么这个点就是树的重心,删除重心后,生成的多颗树尽可能的平衡。
性质:
1、树中所有点到某个点的距离的sum和,到重心的距离sum和是最小的。如果有两个重心,那么他们的距离sum和是一样的、
2、把两棵树通过一个边连接得到一颗新的树,那么新的树的重心在原来两个树的重心的路径上。
3、把一个树添加或删除一个叶子节点,那么它的重心最多移动一个边的距离。
我们根据“所有子树中最大的子树节点个数最小”,这个性质,在dfs整颗树的时候,用cntson[i] 数组记录第i个节点为根的子树节点个数
用在dfs函数用,用cnt记录 当前节点的最大子树节点个数。
那么直需要维护cnt中的最小值即可得到答案。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<int> son[maxn];
int t;
int n;
int ans1;
int ans2;
int cntson[maxn];
void dfs(int x,int pre)
{
cntson[x]=1;
int cnt=0;
// for(auto y:son[x])
for(int i=0;i<sz(son[x]);++i)
{
int y=son[x][i];
if(y!=pre)
{
dfs(y,x);
cntson[x]+=cntson[y];
cnt=max(cnt,cntson[y]);
}
}
cnt=max(cnt,n-cntson[x]);
if(cnt<ans2||(cnt==ans2&&x<ans1))
{
ans2=cnt;
ans1=x;
}
}
void init()
{
repd(i,1,n)
{
son[i].clear();
}
ans2=inf;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
scanf("%d",&t);
while(t--)
{
init();
scanf("%d",&n);
repd(i,2,n)
{
int u,v;
scanf("%d %d",&u,&v);
son[v].push_back(u);
son[u].push_back(v);
}
dfs(1,1);
printf("%d %d\n",ans1,ans2 );
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Balancing Act POJ - 1655 (树的重心)的更多相关文章
- poj 1655 Balancing Act(找树的重心)
Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...
- POJ 1655.Balancing Act 树形dp 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14550 Accepted: 6173 De ...
- POJ 1655 Balancing Act (求树的重心)
求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...
- poj 1655 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13178 Accepted: 5565 De ...
- poj 1655 树的重心 && define注意事项
http://blog.csdn.net/acdreamers/article/details/16905653 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果 ...
- POJ 1655 Balancing Act(求树的重心)
Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...
- I - Balancing Act POJ - 1655
Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...
- POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)
关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...
- POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)
树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...
随机推荐
- [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...
- lxml的XPath解析
BeautifulSoup 可以将lxml作为默认的解析器使用,同样lxml可以单独使用.下面比较这两者之间优缺点: BeautifulSoup和lxml原理不一样,BeautifulSoup是基于D ...
- IntelliJ IDEA 2018 for Mac专业使用技巧
IntelliJ IDEA 2018 for Mac是一个综合性的Java编程环境,被许多开发人员和行业专家誉为市场上最好的IDE,它提供了一系列最实用的的工具组合:智能编码辅助和自动控制,支持J2E ...
- 利用fiddler+nginx模拟流量识别与转发
最近看到一些关于全链路压测的文章,全链路压测主要处理以下问题: 数据清洗压测流量标记,识别 压测流量标记的传递测试数据与线上数据隔离等等... 要实现全链路压测,必然要对原有的业务系统进行升级,要怎么 ...
- 【PP系列】SAP PP模块工作中心主数据维护
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[PP系列]SAP PP模块工作中心主数据维护 ...
- Blender建模与游戏换装(转载文)
本文转载自https://my.oschina.net/huliqing/blog/880113?hmsr=toutiao.io 如果本文涉及侵权行为,请原作者联系博主邮箱,我将及时进行删除处理 博主 ...
- 【JulyEdu-Python基础】第 6 课:高级面向对象
使用@property添加属性和自定义属性 __slots__和property 方法和属性的动态绑定 使用__slots__限定class实例能添加的属性 __slots__仅对当前类实例起作用,对 ...
- 【并行计算-CUDA开发】从零开始学习OpenCL开发(一)架构
多谢大家关注 转载本文请注明:http://blog.csdn.net/leonwei/article/details/8880012 本文将作为我<从零开始做OpenCL开发>系列文章的 ...
- 登录进入Mysql数据库的几种方式
前提:连接进入mysql数据库 本机安装的myslq基础信息: host= "localhost", # 数据库主机地址:127.0.0.1 port=3306, # 端口号 us ...
- HDU 1203 I NEED A OFFER! (动态规划、01背包、概率)
I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...