因为D[i]表示i号节点到1号节点的最短路径,所以可以先以1为源点跑一边SPFA,预处理出每个点到1号节点的最短路。之后开始考虑所谓的“最短路径生成树”,在这棵生成树中有以下性质:当fa[i]==node时,必满足dist[node]+w(node,i)=dist[i],但是dist[node]+w(node,i)==dist[i]时,node不一定是i的父节点,因为图的最短路可能有多条。因此我们记录mul[i]为i的前驱个数,也就是所有满足dist[k]+w(k,i)==dist[i]的点的个数。根据乘法原理累计相乘即可求出答案。

常见疑问:
Q1:为什么这样构造出来一定是一棵树???

A1:因为对于每一棵生成树,除1号节点外,都有一个唯一的前驱,我们假想他们之间连了一条边,则连了(n-1)条边,并且保证联通性,根据树的定义,可以保证这是一棵树。

Q2:为什么可以不排序???网上大神排序出于什么目的???

A2:因为边权均为正,所以比较dist值较大的节点只能从dist值较小的节点走过来,因此对i号节点统计时我们是用不到dist值比i大的节点的,因此使用O(NlogN)的时间按每个节点dist值进行排序,即可省去一半的时间。注意,不排序对正确性没有影响。

Q3:为什么不用伟大的Dijkstra堆优化而使用已经死了的SPFA???

A3:LQX学长调他的堆优化调了一个下午。

参考代码如下:

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define int long long
#define mod 2147483647
#define N 1005
#define M 1000005
#define INF 110412365
using namespace std;
struct node
{
int num,dist;
}point[N];
int n,m,v[M],w[M],head[M],nxt[M],cnt,x,y,z,mul[N];
bool vis[N];
void add(int a,int b,int c)
{
v[++cnt]=b;
w[cnt]=c;
nxt[cnt]=head[a];
head[a]=cnt;
}
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-;ch=getchar();}
return x*f;
}
void spfa(int s)
{
for(int i=;i<=n;i++)point[i].dist=INF;
queue<int>q;
q.push(s);
vis[s]=;
while(!q.empty())
{
int c=q.front();
q.pop();
vis[c]=;
for(int i=head[c];i;i=nxt[i])
{
int y=v[i];
if(point[y].dist>point[c].dist+w[i])
{
point[y].dist=point[c].dist+w[i];
if(!vis[y])
{
q.push(y);
vis[y]=;
}
}
}
}
}
bool cmp(node a,node b)
{
return a.dist<b.dist;
}
signed main()
{
n=read();m=read();
for(int i=;i<=m;i++)
{
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);
}
spfa();
for(int i=;i<=n;i++)
{
for(int j=head[i];j;j=nxt[j])
{
if(point[i].dist+w[j]==point[v[j]].dist)mul[v[j]]++;
}
}
int ans=;
for(int i=;i<=n;i++)ans*=mul[i],ans%=mod;
cout<<ans<<endl;
return ;
}

[暑假集训Day1T1]黑暗城堡的更多相关文章

  1. 2015UESTC 暑假集训总结

    day1: 考微观经济学去了…… day2: 一开始就看了看一道题目最短的B题,拍了半小时交了上去wa了 感觉自己一定是自己想错了,于是去拍大家都过的A题,十分钟拍完交上去就A了 然后B题写了一发暴力 ...

  2. STL 入门 (17 暑假集训第一周)

    快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...

  3. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  4. 【loj10064】黑暗城堡

    #10064. 「一本通 3.1 例 1」黑暗城堡 内存限制:512 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统    评测方式:文本比较 上传者: 1bentong 提交     ...

  5. [LOJ#10064]黑暗城堡

    Description 在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方.Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商 ...

  6. 一本通 P1486 【黑暗城堡】

    题库 :一本通 题号 :1486 题目 :黑暗城堡 link :http://ybt.ssoier.cn:8088/problem_show.php?pid=1486 思路 :这道题既然要求使加入生成 ...

  7. 「CH6202」黑暗城堡

    「CH6202」黑暗城堡 传送门 这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数. 我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程. 当我们把点 \(x\) 加 ...

  8. 信息奥赛一本通1486: CH 6202 黑暗城堡 最短路径生成树计数

    1486:黑暗城堡 [题目描述] 知道黑暗城堡有 N 个房间,M 条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设 Di为如果所有的通道都被修建,第 i 号房间与第 1 ...

  9. 暑假集训Day2 互不侵犯(状压dp)

    这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...

随机推荐

  1. 2018-8-10-win10-uwp-读写XML

    title author date CreateTime categories win10 uwp 读写XML lindexi 2018-08-10 19:16:51 +0800 2018-2-13 ...

  2. JS删除对象中的某一属性(delete)

    var obj= {} 1.JS对象添加新属性 obj.address="shenzhen" 2.JS删除对象中的某一属性(delete) var obj= { height: , ...

  3. Java性能调优工具(Linux)

    为了能准确获得程序的性能信息,需要使用各种辅助工具.以下主要介绍了Linux上关于Java的系统性能分析工具,掌握这些工具,对于性能瓶颈定位.系统故障排查都有帮助. 1.top命令 [root@loc ...

  4. git clone的低级错误

    犯了一个低级错误: server ip: 192.168.40.41 有一个git账户 所有的git仓库都在/home/git仓库下 比如/home/git/u-boot-2018.07-fmxx.g ...

  5. Centos 的防火墙(firewalld,iptables)

    Centos系统防火墙介绍 概述: 1.Filewalld(动态防火墙)作为redhat7系统中变更对于netfilter内核模块的管理工具: 2.iptables service 管理防火墙规则的模 ...

  6. IndexError: list index out of range的错误原因

    第1种可能情况list[index]index超出范围 第2种可能情况list是一个空的 没有一个元素进行list[0]就会出现该错误 ————————————————版权声明:本文为CSDN博主「m ...

  7. 032:DTL常用过滤器(1)

    为什么需要过滤器: 在DTL中,不支持函数的调用形式‘()’,因此不能给函数传递参数,这将有很大的局限性:而过滤器其实就是一个函数,可以对需要处理的参数进行处理,并且还可以额外接受一个参数(也就是说: ...

  8. POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )

    题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...

  9. select自定义箭头问题 。。。和一行内不同颜色的整体鼠标滑过变色

    1.select自定义箭头问题 用<select><option></option></select>的时候自带的三角箭头与需要的三角不同,这是还要求有 ...

  10. tomcat配置解决乱码问题

    在服务器上,如果项目是Tomcat启动的,可以用以下方式的设置解决乱码问题: 方法1.在Tomcat的catalina.sh(或者catalina.bat)文件中,开头加入: set JAVA_OPT ...