题目链接:

洛谷 P3187 [HNOI2007]最小矩形覆盖

BZOJ 1185: [HNOI2007]最小矩形覆盖

Description

给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,

输出所求矩形的面积和四个顶点坐标

Input

第一行为一个整数n(3<=n<=50000)

从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法

Output

第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),

接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,

其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点

Sample Input

6 1.0 3.00000

1 4.00000

2.0000 1

3 0.0000

3.00000 6

6.0 3.0

Sample Output

18.00000

3.00000 0.00000

6.00000 3.00000

3.00000 6.00000

0.00000 3.00000

Solution

旋转卡壳

旋转卡壳求最小面积多边形外接矩形的模板题。

精度问题卡了好久,-0.00000 被卡了,真的毒瘤。

首先求凸包,然后用旋转卡壳维护最左边的点,最上面的点和最右边的点即可。(下图中的 \(L\), \(K\), \(J\) 点)

最上面的点的求法类似凸包的直径,就是求对踵点,用叉积维护即可。

最左边和最右边的点就是投影最大的点。用点积维护。

注:比较的时候最好不要直接用比较运算符。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int maxn = 100000 + 5; int n; inline int dcmp(double x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
Point operator*(double a) {
return Point(x * a, y * a);
}
bool operator==(const Point &a) const {
if (x == a.x && y == a.y)
return 1;
return 0;
}
double len() {
return sqrt(x * x + y * y);
}
double dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
double dis(const Point a) {
return sqrt(dis2(a));
}
}; Point ans[10]; typedef Point Vector; double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} typedef vector<Point> Polygon;
Polygon Andrew(Polygon P) {
int n = P.size(), k = 0;
vector<Point> H(2 * n);
sort(P.begin(), P.end());
for (int i = 0; i < n; ++i) {
while (k >= 2 && cross(H[k - 1] - H[k - 2], P[i] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i];
}
int t = k + 1;
for (int i = n - 1; i > 0; --i) {
while (k >= t && cross(H[k - 1] - H[k - 2], P[i - 1] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i - 1];
}
H.resize(k - 1);
return H;
} double rotating_caliper(Polygon v) {
double min_s = 1e18;
int cnt = v.size();
v.push_back(v[0]);
int u = 1, r = 1, l = 1;
for (int i = 0; i < cnt; ++i) {
// 最上面的点
while (dcmp(fabs(cross(v[u] - v[i], v[i + 1] - v[i])) - fabs(cross(v[u + 1] - v[i], v[i + 1] - v[i]))) <= 0) {
u = (u + 1) % cnt;
} // 最右边的点
while (dcmp(dot(v[r] - v[i], v[i + 1] - v[i]) - dot(v[r + 1] - v[i], v[i + 1] - v[i])) <= 0) {
r = (r + 1) % cnt;
} if(!i) l = r; // 最左边的点
while (dcmp(dot(v[l] - v[i], v[i + 1] - v[i]) - dot(v[l + 1] - v[i], v[i + 1] - v[i])) >= 0) {
l = (l + 1) % cnt;
}
double d = v[i].dis(v[i + 1]);
double R = dot(v[r] - v[i], v[i + 1] - v[i]) / d;
double L = dot(v[l] - v[i], v[i + 1] - v[i]) / d;
double ll = R - L;
double dd = fabs(cross(v[u] - v[i], v[i + 1] - v[i])) / d;
double s = ll * dd;
if(s < min_s) {
min_s = s;
ans[0] = v[i] + (v[i + 1] - v[i]) * (R / d);
ans[1] = ans[0] + (v[r] - ans[0]) * (dd / v[r].dis(ans[0]));
ans[2] = ans[1] + (v[i] - ans[0]) * (ll / R);
ans[3] = ans[2] + (ans[0] - ans[1]);
}
}
return min_s;
} int main() {
scanf("%d", &n);
Polygon s;
for(int i = 0; i < n; ++i) {
Point p;
scanf("%lf%lf", &p.x, &p.y);
s.push_back(p);
}
Polygon p = Andrew(s);
double d = rotating_caliper(p);
printf("%.5lf\n", d);
double miny = 1e18;
int index = 1;
for(int i = 0; i < 4; ++i) {
if(dcmp(ans[i].x) == 0) ans[i].x = 0;
if(dcmp(ans[i].y) == 0) ans[i].y = 0;
if(ans[i].y < miny) {
miny = ans[i].y;
index = i;
}
}
double minx = 1e18;
for(int i = 0; i < 4; ++i) {
if(ans[i].y == miny && ans[i].x < minx) {
minx = ans[i].x;
index = i;
}
}
for(int i = 0; i < 4; ++i) {
printf("%.5lf %.5lf\n", ans[(i + index) % 4].x, ans[(i + index) % 4].y);
}
return 0;
}

洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)的更多相关文章

  1. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  2. bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...

  3. BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子

    来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...

  4. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  5. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  6. bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳

    题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...

  7. ●BZOJ 1185 [HNOI2007]最小矩形覆盖

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...

  8. BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...

  9. 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)

    给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...

随机推荐

  1. IOS 基于APNS消息推(JAVA后台)

    直接上Demo import java.util.ArrayList; import java.util.List; import org.apache.commons.lang3.StringUti ...

  2. Openstack组建部署 — Environment of Controller Node

    目录 目录 前文列表 Controller Node Install and configure components Setup DNS Server Setup NTP Server Instal ...

  3. HDU 3746 Cyclic Nacklace (KMP找循环节)

    题目链接:HDU 3746 Sample Input 3 aaa abca abcde Sample Output 0 2 5 Author possessor WC Source HDU 3rd & ...

  4. 使用font-size:0px 来制作跨浏览器的inline-block css属性

    如果排列的元素是等高的话,相信很多人都会使用浮动来布局,不过如果元素不等高的话,不添加多余的标签,浮动布局是很难实现下图中的效果.如果遇到这种情况,可以使用inline-block来布局. 现代浏览器 ...

  5. 【Linux】- CentOS7安装java运行环境

    centos7中安装java环境,在安装前先查看有无安装过java环境.直接运行java命令,会提示命令未找到,则是没有安装过java环境. 1.检查 也可以通过rpm命令查看: rpm -qa |g ...

  6. windows下虚拟环境的安装与创建

    使用虚拟环境的好处: 可以方便的解决不同项目对类库的依赖问题. 可以在系统中Python解释器中避免包的混乱和版本的冲突. 为每个程序单独创建虚拟环境,可以保证程序只能访问虚拟环境中的包,保持全局解释 ...

  7. docker--删除container和image

    docker的命令分两类Management Commands和Commands Management Commands是对docker里的对象进行管理的 [root@localhost docker ...

  8. 【DRP】採用dom4j完毕XML文件导入数据库

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/lantingxv_jing/article/details/37762523     xml文件在如 ...

  9. SpringBoot开发详解(五)--Controller接收参数以及参数校验

    原文链接:http://blog.csdn.net/qq_31001665 如有侵权,请联系博主删除博客,谢谢 Controller 中注解使用 接受参数的几种传输方式以及几种注解:  在上一篇中,我 ...

  10. springboot Service层单元测试

    两个实现类实现同一个Service接口 public interface CustomUrlService { List<ShopMetrics> getShopMetrics(); } ...