题目链接:

洛谷 P3187 [HNOI2007]最小矩形覆盖

BZOJ 1185: [HNOI2007]最小矩形覆盖

Description

给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,

输出所求矩形的面积和四个顶点坐标

Input

第一行为一个整数n(3<=n<=50000)

从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法

Output

第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),

接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,

其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点

Sample Input

6 1.0 3.00000

1 4.00000

2.0000 1

3 0.0000

3.00000 6

6.0 3.0

Sample Output

18.00000

3.00000 0.00000

6.00000 3.00000

3.00000 6.00000

0.00000 3.00000

Solution

旋转卡壳

旋转卡壳求最小面积多边形外接矩形的模板题。

精度问题卡了好久,-0.00000 被卡了,真的毒瘤。

首先求凸包,然后用旋转卡壳维护最左边的点,最上面的点和最右边的点即可。(下图中的 \(L\), \(K\), \(J\) 点)

最上面的点的求法类似凸包的直径,就是求对踵点,用叉积维护即可。

最左边和最右边的点就是投影最大的点。用点积维护。

注:比较的时候最好不要直接用比较运算符。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int maxn = 100000 + 5; int n; inline int dcmp(double x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
Point operator*(double a) {
return Point(x * a, y * a);
}
bool operator==(const Point &a) const {
if (x == a.x && y == a.y)
return 1;
return 0;
}
double len() {
return sqrt(x * x + y * y);
}
double dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
double dis(const Point a) {
return sqrt(dis2(a));
}
}; Point ans[10]; typedef Point Vector; double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} typedef vector<Point> Polygon;
Polygon Andrew(Polygon P) {
int n = P.size(), k = 0;
vector<Point> H(2 * n);
sort(P.begin(), P.end());
for (int i = 0; i < n; ++i) {
while (k >= 2 && cross(H[k - 1] - H[k - 2], P[i] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i];
}
int t = k + 1;
for (int i = n - 1; i > 0; --i) {
while (k >= t && cross(H[k - 1] - H[k - 2], P[i - 1] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i - 1];
}
H.resize(k - 1);
return H;
} double rotating_caliper(Polygon v) {
double min_s = 1e18;
int cnt = v.size();
v.push_back(v[0]);
int u = 1, r = 1, l = 1;
for (int i = 0; i < cnt; ++i) {
// 最上面的点
while (dcmp(fabs(cross(v[u] - v[i], v[i + 1] - v[i])) - fabs(cross(v[u + 1] - v[i], v[i + 1] - v[i]))) <= 0) {
u = (u + 1) % cnt;
} // 最右边的点
while (dcmp(dot(v[r] - v[i], v[i + 1] - v[i]) - dot(v[r + 1] - v[i], v[i + 1] - v[i])) <= 0) {
r = (r + 1) % cnt;
} if(!i) l = r; // 最左边的点
while (dcmp(dot(v[l] - v[i], v[i + 1] - v[i]) - dot(v[l + 1] - v[i], v[i + 1] - v[i])) >= 0) {
l = (l + 1) % cnt;
}
double d = v[i].dis(v[i + 1]);
double R = dot(v[r] - v[i], v[i + 1] - v[i]) / d;
double L = dot(v[l] - v[i], v[i + 1] - v[i]) / d;
double ll = R - L;
double dd = fabs(cross(v[u] - v[i], v[i + 1] - v[i])) / d;
double s = ll * dd;
if(s < min_s) {
min_s = s;
ans[0] = v[i] + (v[i + 1] - v[i]) * (R / d);
ans[1] = ans[0] + (v[r] - ans[0]) * (dd / v[r].dis(ans[0]));
ans[2] = ans[1] + (v[i] - ans[0]) * (ll / R);
ans[3] = ans[2] + (ans[0] - ans[1]);
}
}
return min_s;
} int main() {
scanf("%d", &n);
Polygon s;
for(int i = 0; i < n; ++i) {
Point p;
scanf("%lf%lf", &p.x, &p.y);
s.push_back(p);
}
Polygon p = Andrew(s);
double d = rotating_caliper(p);
printf("%.5lf\n", d);
double miny = 1e18;
int index = 1;
for(int i = 0; i < 4; ++i) {
if(dcmp(ans[i].x) == 0) ans[i].x = 0;
if(dcmp(ans[i].y) == 0) ans[i].y = 0;
if(ans[i].y < miny) {
miny = ans[i].y;
index = i;
}
}
double minx = 1e18;
for(int i = 0; i < 4; ++i) {
if(ans[i].y == miny && ans[i].x < minx) {
minx = ans[i].x;
index = i;
}
}
for(int i = 0; i < 4; ++i) {
printf("%.5lf %.5lf\n", ans[(i + index) % 4].x, ans[(i + index) % 4].y);
}
return 0;
}

洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)的更多相关文章

  1. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  2. bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...

  3. BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子

    来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...

  4. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  5. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  6. bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳

    题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...

  7. ●BZOJ 1185 [HNOI2007]最小矩形覆盖

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...

  8. BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...

  9. 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)

    给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...

随机推荐

  1. CSS样式初始化代码

    CSS样式初始化代码 为什么要初始化CSS? 建站老手都知道,这是为了考虑到浏览器的兼容问题,其实不同浏览器对有些标签的默认值是不同的,如果没对CSS初始化往往会出现浏览器之间的页面差异.当然,初始化 ...

  2. 搭建RAID5(5块硬盘)过程并模拟一块磁盘损坏情况

    首先:在配置RAID5之前我们先来了解一下它.RAID5,RAID是指独立磁盘冗余阵列,是把相同的数据存储在多个硬盘的不同地方的方法.通过把数据放在多个硬盘上,输入输出操作能以平衡的方式交叠,改良性能 ...

  3. python2和python3中int整型数据的不同之处

    python2中的除法,结果为整型数字(int型),例如 10/5=2,10/3=3,小数位向下取整 python3中的除法,结果为浮点型数字(float型)结果小数位最多保留16位小数

  4. 桩服务开发2---与python结合

    from mitmproxy import httpdef request(flow): request_data=flow.request print(request_data) 进入py目录,在终 ...

  5. 第九章 Service

    2019-09-23 今天距离2020年刚好有一百天,希望在未来的百日里能不负期待 不忘初心,方得始终, 初心易得,始终难守. 一.Service 的概念 Kubernetes Service定义了这 ...

  6. Java web 应用自启动 shell脚本自动重启

    之前公司的内部管理系统jenkins自动构建代码有时候会失效,导致服务停掉. 于是乎就搞了一个自动启动脚本. oa.jar就是监测的服务 startup.sh 的内容是运行jar包的命令 java - ...

  7. 让所有Excel数据格全部乘 某个数

    1  首先设置单元格格式要是数字 2  然后在随便一个单元格写入你要乘的数字 3  粘贴的时候设置选择性粘贴,然后设置乘就OK

  8. SecureCRT无法删除和退格的解决办法

    一   选项中,设置自动保存 二   选项=>会话选项 选择linux终端.然后在映射键中,选择delete 等映射信息

  9. js取整 - 优雅版(装逼必备)

    var a = 2.98; var z1 = ~~a; var z2 = a | 0; var z3 = a>>0; console.log(z1, z2, z3);     // 2, ...

  10. nodejs模块——fs模块 使用fs.write读文件

    fs.write() fs.read(fd,buffer,offset,length[,position],callback(err,bytesWritten,buffer))接收6个参数. 参数说明 ...